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Practical societal needs and basic scientific
advances frequently rely on Measurement Processes
possessing specified detection capabilities with accept-
able probabilities of false positives and false nega-
tives. The first part of this overview introduces the
basic concept of (chemical) detection, together with its
applicability to selected societal problems such as the
detection of natural hazards and the implementation of
certain regulations. Basic scientific measurement issues
concerning assumptions and their wvalidity, plus hypo-
thesis testing and decision theory as related to analyte
detection are mnext introduced. Part two comprices =a
brief historical review, highlighting major contributions
to the concept and realization of detection in chemical
applications. The current state of the art is then
considered. Part three is the most extensive, as it
seeks to expose most of the technical issues involved in
deriving meaningful detection decisions and detection
limits, - considering the overall Chemical Measurement

Process. Those concerned primarily with societal or
historical matters may wish to pass over this part.
Among the topics discussed are: systematic and model

error; non-normal random error; the special problem of
the blank; replication vs Poisson variance; 1issues
concerning ‘complex data evaluation, calibration, and
reporting -- including pitfalls associated with "black
box" algorithms; OC curves; power of the t-test; and
quality. The section concludes with some new material on
discrimination limits, lower and upper regulatory limits,
multiple detection decisions, and univariate and multi-

variate identification. A brief gsummary follows,
bringing together historical, societal, and technical
highlights. A concluding observation is that a

meaningful approach to practical societal needs is at
hand, but that order must be brought out of the extant
diversity of technical views on detection.
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DETECTION IN ANALYTICAL CHEMISTRY

The DETECTION LIMIT (L,) 1is one of the most important
characteristics of any Measurement Process. Recognizing the
existence of such limits is crucial both for strictly scientific
endeavors, such as the search for a new fundamental particle (1),
and for wvital societal applications of scientific measurements,
such as the detection of a pathological state or a hazardous level
of a heavy metal. In this latter regard, important progress has
been made in conveying to the publie and their palicy makers that
it is a law of measurement science that the detection capability of
all Measurement Processes must stop short of zero, in close analogy
with the Third Law of Thermodynamics.

Recognition that L, may not be zero, has alleviated earlier
legislative problems, such as the dictum that no residue of proven
animal carcinogens may be present in certain food products (2).
The fact, however, that detection limits can, at a cost and with
technological advances, be made ever smaller has forced reexami-
nation of regulatory issues in the 1light of extant and even

potential detection capabilities. The consequence has been the
consideration of cost/benefit or "acceptable risk" alternatives to
"no detectable residue" regulatory policy (3). Such alternatives

are mandatory in light of the fundamental principles of detection.
Defining acceptable levels of risk (4), whether in a regulatory
setting or with respect to medical decisions or even in terms of
governmental actions in connection with potential natural
disasters, is primarily a sociopolitical matter. Althougli this
issue is of central importance, it transcends the theme of this
chapter, which is to examine the historical evolution and current
state of the art of detection from the perspective of chemical
measurement ccience.

In order to highlight the importance of Detection Decisions
and Detection Limits, and to underline the fact that the
probability of detection does not immediately pass from zero to
unity at the Detection Limit, we have presented in Fig. 1 several
situations where valid detection decisions and adequate detection
limits are of considerable practical importance. (The presence of
a finite risk of error (false negative) at the detection limit --
i.e., the absence of "certainty" -- is the second aspect of the
problem that is somewhat foreign to the common understanding, the
first being the fact that zero detection limits are unattainable.)
This figure introduces the Hypothesis Testing foundation for
Detection, and it demonstrates that it is essential for those of us
involved in measurement science to develop a sound, common, and
quantitative approach to the formulation of Detection Limits. 1In
addition, this formulation must be communicated in an effective
manner both within the scientific community and with those who
depend on our measurements for socletal decislons and pollcy
making.

As a final introductory note, it should be observed that from
the perspectives of basic discoveries in Science and the early
discernment of fundamental changes in the Global Environment (e.g.,
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Fig. 1. Hypothesis Testing and Detection Limits. The upper

part of the figure indicates the null [H,] and alternative [H,1]
hypotheses, with the corresponding decisions [D,, D,1 at the left.
Two kinds of orroncous decisions may be made:. false poslitives
[probability a] and false negatives [probability B]. (S represents
a signal level; G, a decision point or "eritical" level.) The
lower section contrasts a number of "real world" H,'s and H,'s
where adequate detection limits for the H,'s have clear, practical
consequences.
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stratospheric ozone changes, CO,-induced global warming), the
ability to design measurement processes having sufficient detection
capability places one at the “cutting edge." Repeatedly in
Science, one finds that discoveries are made just as the signals
begin to emerge from the noise; and it is the "trained eye" which
is generally the first to grasp them. Also, in the context of
experimental design, it should be noted that absolute detection
limits are often the goal, in that the hypothesis (or phenomenon)
to be detected is generally conrceived of in sheolute rather than
relative units.

1. BREADTH: The Scope of Detection

Fires, earthquakes and other natural hazards, pathological states,
chemical contaminants, mnew fundamental particles or theories,
instigators or sources of pollution or crime, mnatural or
anthropogenic events of the past -- these are all illustrations
wherein the basic concept of Detection, especially as embodied in
the Statistical Theory of Hypothesis Testing, occupies a central

position. Hypothesis formation -- i.e., specification of the
source or system state or phenomenon to be tested [the "null
hypothesis"] -- is necessarily the first step. For example, one

might wish to test the null hypothesis (H,) that no earthquake
occurred (at a given time and place). To test H, , one requires a
test- or measurement-process (MP), often a Chemical Measurement
Process (CMP), the outcome of which ylelds a Decision regarding the
validity of the null hypothesis. The "alternative hypothesis™ (H,)
wvhich we wish to be able to detect -- e.g., an earthquake of a
given magnitude -- must exceed the Detection Limit of the
Measurement Process employed.

The keys to understanding the meaning of Detection Decisions
and Detection Limits in matters of practical importance to science
and society are: a) the existence of the two states [or
hypotheses] which we wish to distinguish; b) a specified measure-
ment process having an adequate DETECTION LIMIT; and c¢) a threshold
or CRITICAL LEVEL for the measurement variable [Signal] for making
the Detection Decision. Unfortunately, no measurement process can
be exact, so false positives [a-error, e.g., earthquake erroneously
"detected"] and false negatives [B-error, e.g., actual earthquake
missed] will occur. Perhaps a more common example is that of the
fire alarm. The measurement in this case might be made with a
smoke detector, which if set to too low a threshold might give a
false alarm [wa-error] due to cooking fumes; if the critical level
or threshold is set too high, a real fire of some consequence might

be missed [B-error]. If an adequate balance between these two
types of error camnmot be achieved, one needs a better measurement
process -~ l.e., a detector having a lower detectlon limit. Note

that the detection limit is an inherent property of the measurement
process, whereas the detection decision is made by comparing an
outcome or result of measurement with the Critical Level [threshold
setting].

Fig. 1 suggests a wide range of situations where adequate
detection limits are crucial for the well-being of society. The
figure implies that the alternative hypothesis has a unique value
on the x-axis. This is sometimes true. For example, the
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radiocarbon concentration [isotope ratio] for 1living matter is
14gs22¢ = 1.18x107'2, whilst that for fossil fuel carbon is
effectively zero (3). A similar situation obtains for population
means for chemical concentrations indicative of certain
pathological states (e.g., glucose in diabetes (6)), or trace
element concentrations characteristic of certain ore bodies. Tn a
great majority of cases, however, the intensity or magnitude
variable (x-axis) can take on many discrete (denumerable H,'s), or
even continuous values (infinite number of H,'s). Such is the
case, for example, with chemical or radiocactivity contamination,
earthquakes, fires, hurricanes, etc. For a given measurement
process a special relation exists among the “"distance" between H,
and H,, and the two kinds of error, o and B. Fixing any two of
these quantities determines the third, as will be shown in a later
discussion of "Operating Characteristics." (Section 3.2.3.)

1.1 Regulatory Limits and Detection Limits. The practical
significance of detection limits is best appreciated in connection
with a specific external problem. lhus, based on quantitative
assessment of health effects or of a new scientific phenomenon, one
may conclude that it is vital to be able to detect a signal or
concentration level as low as, say Ly. It follows that a measure-
ment process having L, mno greater than Ly must be selected or,
costs permitting, designed to meet the need. This is illustrated
in Fig. 2 which depicts the critical level and detection limit
schematically for earthquakes. The upper part of the figure
presents an hypothetical relation between damage or societal cost
and undetected earthquake magnitude, together with a maximum
acceptable cost which fixes a "regulatory limit," Lg. (Iy might be
defined, for example, by the "balance point" at which the false
positive [false alarm] cost -- the cost of evacuation, is
equivalent to the false negative cost -- damage incurred or lives
lost in the absence of evacuation.) The lower part of the figure
indicates the signal detection limit of a measurement process which
meets this need. Also shown is the dependence of L, and the two
types of hypothesis testing errors on random measurement error.
(The lower portion of the figure, for actual earthquake forecast-
ing, relates to precursor measurement processes. The wealth of
physical and chemical precursors utilized are reviewed by K. Mogi
in Science, 1986, 233, 324.)

Two observations, perhaps obvious, follow from Fig. 2:
first, a zero magnitude earthquake could not in principle be made
detectable; second, with improving performance [decreased detection
limit] formerly undetectable tremors will be found. Lack of
appreciation of these fundamental principles of measurement may
lead to regulatory difficulties, such as the requirement that any
non-zero quantities of chemical carcinogens should be detectable,
or that any deteclable amounts should be reported (2). The latter
has in effect been equivalent to a moving target, as analytical
procedures continue to advance dramatically [Note 1].

A footnote on the matter of regulation, which leads directly
to our next topic, relates to the relatively recent cost/benefit
basis for regulatory decisions (3) and the emergence of the
discipline of Risk Assessment (4). That is, that despite the lack
of any explicit incorporation of a dollar value on human life in
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Fig. 2. Regulatory Levels [Ly] and Detection Limits [IL;].
The upper portion of the figure traces a presumed relation between
earthquake magnitude [abscissa] and cost to society [ordinate].
The "Delaney amendment" viewpoint (not defined for earthquakes)
might be interpreted as requiring zero societal risk and a cor-
responding L; magnitude of zero, which of course is scientifically
unattainable. Rather, an acceptable cost to society for undetected
earthquakes, here imagined to be 0.1 M$, is used to establish the
requisite "regulatory" level. The lower part of the figure
represents the corresponding earthquake measurement process or
precursor alarm (seismograph signal, radon emanations, biological
[animal] sensors, etc.). The requisite DETECTION LIMIT [L;] must
now be no greater than L,, and L; in turn is related to the
probability density functions [pdf] for the null signal [H : 5=0]
and the signal to be detected [H,: S=L;], and acceptable false
decision probabilities o, B. L. is fixed by the H -pdf and a; L,
is then set by L. and §, given the H,-pdf.
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the algebra of regulation, a de facto "$2 million unwritten rule"
has evolved (Z). An analysis of 10 years of regulatory decisions
in the US relating to chemical carcinogens showed that this value
fairly consistently marked the point above which regulations were
classified as too costly to impose, and below which regulations
were judged as warranted.

Our use of the symbol L;, incidentally, is not restricted to
regulatory matters. Earthquakes, for example, cannot be regulated!
Rather, Ly denotes the external limit which drives the design of
our measurement process. It could apply as well to the require-
ments of a high quality production process, or a tracer study of
long range atmospheric transport, or the investigation of extremely
slow reaction processes, or in fact any of the situations indicated
in Fig. 1. Perhaps it might better be labeled "reference limit (or
level)" or "requisite limit."

1.2 Decision Theory and Societal Decisions/Actions. The foregoing
introduction to detection theory was based strictly on the Neyman-
Pearson or "frequentist® approach to significance testing and
signal detection (8.9), with the exception of the imposition of an
external reference or regulatory limit, Ly, based on sociopolitical
and/or scientific considerations. An alternative approach,
especially appropriate for (detection) decisions culminating in
some kind of action, is provided by the application of Decision
Theory (10), or more generally Decision Analysis (1l). Although
this theory may be of considerable importance for certain societal
ox business decision-making, its structure is such that it is not
generally applied to chemical measurements.

The major advantages of the decision theoretic approach are
that it permits ome to apply explicit loss functions to _the
erroneous decisions [a,B-errors], and that it readily incorporates
prior (or “subjective") knowledge concerning the probabilities of
the respective hypotheses. The ability to utilize loss functions
and prior probability is advantageous in that costs and beliefs and
values external to the measurement process may be effectively
incorporated into the decision making. A complication is that
there may not be unanimity concerning the weights to be assigned to
these quantities; this is somewhat analogous to the complications
in reaching agreement on appropriate values for Ly. [Costs, for
example, would doubtless be viewed differently by regulators and
regulatees, producers and consumers, physicians and patients, etc.
The issue is analogous to the question of "whose experts" are
speaking in Court or advising in Congress -- 1i.e., it |is
necessarily tewpered by advocacy posiltions.] Except when one is
treating a strictly scientific question, however, it is important
to realize that the losses and prior probabilities are frequently
complex sociopolitical and/or economic matters, best determined by
experts in those fields.

Decision theory operates on the basis of an "objective
function" which is in some way optimized through the setting of a
decision threshold. A lucid presentation to alternative strategies
for formulating detection decisions has been given by Liteanu and
Rica (8, p. 192). The essence of the matter is that a threshold
value k, for the Likelihood Ratio is derived from a) prior
probabilities for the null and alternative hypotheses, b) a cost or
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loss matrix specifying costs associated with correct and erroneous
decisions, and the probability density functions (pdf) for
experimental outcomes for each of the hypotheses in question.
These data are combined to compute the mean loss (or cost or risk)
which is then minimized in order to derive k . The decision test
is performed by comparing the observed (experimental) value for k
with k,. [k, the likelihood ratio, is the ratio of the pdf for H,
to that for H, at the signal level in question.] The optimal
value, k, based on the "Bayes Criterion" is given by the product of
the net cost of a false positive and the prior probability of Hj
divided by the product of the net cost of a false negative and the
prior probability of H,. An interesting illustration leading to
the same conclusion is given in Massart, Dijkstra and Kaufman (12,
p. 516) in connection with medical diagnoses and selection of the
optimal point on the Receiver Operating Characteristic Curve [ROC].
[Operating Characteristic (0C) and ROC curves will be discussed
briefly in a subsequent section.] The issue of developing an
"optimal" decision strategy based on the prior distributions of
both well and ill patients is an interesting one. In the illustra-
tion presented in Ref. 12 (pp. 508 ff), for example, there is a
presumed preponderance of healthy patients [prior distributions].
By using the distributional crossing point as the threshold, one
finds that about half of the abnormal (ill) subpopulation would
have been misdiagnosed! (See also Appendix H in Egan (2) for an
interesting illustration of the Bayesian approach to medical
decision making, and the consequent need for multiple diagnostic
tests -- a non-trivial issue in the light of current efforts of
major medical insurers to curtail the number of diagnostic tests.)

References (8) and (10) give alternative decision strategies
-- Minimax, Ideal Observer, and Maximal Likelihood -- when only
partial information is available for prior probabilities and/or
costs. [The Minimax approach, for example, cuts one’s losses from
a wrong guess for the prior probabilities.] The effects of special
preferences or aversions [e.g., to extreme cost] are discussed in
terms of "Utility Theory" by Howard (ll), as well as the use of
Decision Analysis for designing sequential experiments and the
setting of research priorities.

This brief excursion into Decision Theory is included to
indicate the manner in which experimental data can be coupled with
external (societal) judgments to form a logical basis for societal
decisions and actions. A justification for so complex a strategy
for decision making is that "simple" scientific measurements and
model evaluations will always be characterized by measurement
uncertainty. Yet societal decisions and actions must take place
even under the shadow of uncertainty. For scientific measurements,
as discussed in the following text, however, we shall restrict our
attention to the relatively simple Neyman-Pearson hypothesis
testing model (8, p. 198).

1.3 Testing of Assumptions. The detection of erroneous
assumptions lies at the core of sound measurement science. It 1is
therefore especially appropriate to include reference to Detection
Decisions and Detection Limits for key assumptions in our survey of
the scope of Detection. Assumptions of principal importance for
chemical measurements include those relating to the functional form
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and parameters for a) the physicochemical (or empirical) model and
b) the error model relating the experimental observations to the
underlying chemical composition. ‘Among the assumptions, or assumed
parameters to be tested, the following are of special importance:

Functional Relation

o number of chemical components

o characteristic spectra or chromatographic patterns

o mathematical relation for the response for each
component (includes correct identification, and
curve shape) .

o matrix effects and interference [interactions] among
components

o parameters such as the blank, recovery, sensitivity
(efficiency)

Error Model
o cumulative distribution function [type]
o parameters [variance, higher moments] (variance
components for compound distributions)
o autocorrelation [non-white noise]
systematic error or bias [bounds]
o blunders (discrimination from chance vulliers, from
discoveries)

[}

Hypothesis testing is applicable to all of the above factors.
NDetection decisions may he made, for example, ueing the ecritical
level of Student's-t to test for bias, or the critical level of 2
to test an assumed spectral shape or calibration model or error
model. For a given measurement design and assumption test proce-
dure, one can estimate the corresponding detection limit for the
alternative hypothesis, e.g., the minimum detectable bias. As with
analyte detection, the ability to detect erroneous assumptions
rests heavily on the design of the experiment; and the study of
optimal designs is a field unto itself.

A survey of several of the above model-parameter assumptions,
as related to chemical component (or analyte) detection will be
presented later. Let us terminate this preview with two observa-
tions: a) Tests of assumptions may themselves rest upon assumptions
-~ an obvious case being the use of Student's t, which rests upon
the assumption of normality; b) Detection of an analyte through

model failure (lack of fit) -- e.g., evaluating x* when fitting a
spectrum with one component missing -- is less sensitive than
direct detection using the correct model. This is due to col-

linearity among spectral patterns (or overlapping chromatographic
peaks) (13).

1.4 Analyte Detection. This is a primary focus for this volume,
the specification of critical levels or thresholds for analyte
detection decisions, and the design of CMP's to achieve requisite
analyte detection 1limits. The following section includes an
historieal perspective on the topic. A tutorial is provided in the
chapter by Kirchmer (1l4), where a crucial distinction is noted:
that is, the detection decision is made in reference to an
observed, random experimental outcome (estimated concentration),
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vhereas the detection 1limit vrefers to the underlying true
concentration which the CMP is capable of detecting. The chief
reason for interest in the latter is advanced planning and design
-- i.e., assessing the capability of the CMP in question to meet
the measurement needs.

Because of the broad scope of detection, as outlined in the
preceding paragraphs, it is useful to distinguish some of the
quantities or events detected with appropriate symbols. For the
purposes of this chapter, the following will be used:

Critical Level Detection Limit

generic symbol L. Ly

event or system state 0c 6,
(earthquake, oil spill)

analyte concentration e =p
(or amount)

instrument response S¢ Sy
(net signal)

bias A A,

external random error %C [
(non-Poisson; "between")

model - lack of fit X% s --

In addition to the above, IL; 1s used to denote the external
limit which drives the design of the Measurement Process (MP).
Thus, if successful process control, or early warning (natural or
human disasters), or fundamental chemical research depends on
achieving a limit Ly, then the MP must be so designed that its
Lp<ly .

Note that the critical level of the appropriate test statistic
(zy_4, t;_q, €tc) can generally be used as a normalized alterna-
tive to X., Sy, etc. The "detection limit" for a test statistic,
however, is meaningless, as %, S,, etc. refer to the true underly-
ing quantity. A corollary is that the term "detection limit" is
also without meaning in the absence of an alternative hypothesis.
(This is perhaps an obvious philosophical matter, but in principle,
the null hypothesis cannot be rejected, except by chance [a-error],
if no alternative exists; the pB-error 1is then necessarily
undefined. Of course an unexpected rejection can lead to an
exciting search for the alternative.)

2. HISTORICAL PERSPECTIVE

The dual questions, "How little can I detect?", and "Has something
been detected?" have long caught the attention of analytical
scientists. Throughout recent history (i.e., 20th century) a

number of responses have been formulated, such as

o The intuitive [formulation]: basing detection decisions and
limits on sound, but not readily quantifiable experience
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o The ad hoc: selecting a rigid formula, often based on some
reasonable limiting condition, wvia dictum, voting or
consensus

o The sighal/noise: generally assuming white noise, and
addressing primarily testing of an observed signal

o The avoidance: only results or measurement processes
thoroughly removed from the detection limit deserve our
attention

o The hypothesis testing: where explicit attention is given
to the risks of both false positive and false negative
detection decisionms.

In reviewing the history of detection limits (in Analytical
Chemistry) it is helpful to keep these several, often implicit,
differences in mind. If it is agreed that the concept of detection
has meaning, then it is essential that the above questions be fully
defined and explicitly addressed. In the view of this author a
meaningful approach to analyte detection must be consistent with
our approach to uncertainty components of measurement processes and
experimental results; the soundest approach is probably the last
[hypothesis testing] tempered with an appropriate measure of the
first [scilentific intuitionm].

Table I has been prepared from this perspective. The authors
selected are drawn primarily from those who have contributed basic
statements on the issue of detection capabilities of chemical
measurement processes ["detection limits"], as opposed to simply
addressing detection decisions for observed results ["ecritical
levels"]. 1In fairness to those not listed, it is important to note
that a) a selection only, spanning the last several decades has
been given, and that b) there also exist many excellent articles
(15.16) and books (12,17.18) which review the topic. It is
immediately clear from Table I that the terminology has been wide
ranging, even in those cases where the conceptual basis (hypothesis
testing) has been identical. Nomenclature, unlike scientific facts
and concepts, can be approached, however, through consensus. The
International Union of Pure and Applied Chemistry [IUPAC], which
appears twice in Table I, is the international body of chemists
charged with this responsibility. At this point it will be helpful
to examine the position of IUPAC as well as the contributions of
some of the other authors cited in Table I.

Fritz Feigl (19), the father of "Spot Tests," heads the list
primarily as one who suggested lower limits for chemical measure-
ment, here translated (from the german) as "identification limits,"
which represented the best experience [or chemical intuition] of
the day. Such limits, typically in the microgram range, were
scarcely ad hoc, but they of course lacked the statistical sophis-
tication of latter day limits. Feigl’s limits, however, deserve
our attention even today, in that they recognize the overall
capability of the measurement process including that which cannot
be readily treated by statistics [Note 2].
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Table I. Historical Perspective -- Detection Limit Terminology

Feigl ('23) - Identification Limit (19)

Altshuler ('63) - Minimum Detectable True Activity (21)

Kaiser (’'65-'68) - Limit of Guarantee for Purity (20)

St. John ('67) - Limiting Detectable Concentration (S/N.p¢)
(24)

Currie ('68) - Detection Limit (23)

Nicholson ('68) - Detectability (25)

IUPAC ('76) - Limit of Detection (29)

Ingle ('74) - ("[too] complex...not common”) (27)

Lochamy ('76) - Minimum Detectable Activity (92)

Grinzaid ('77) - Nonparametric Detection Limit (26)

Liteanu ('80) - Frequentometric Detection Limit (8)

NRC ('84) - Lower Limit of Detection [28]

IUPAC ('86) - Detection Limit (30)

IAEA ('87) - Detection Limit (93).

Among the others cited in Table I, Kaiser (20) deserves major
credit for introducing the hypothesis testing concept into spectro-
chemical analysis, as does Altshuler (21) in radioactivity measure-
ment. Wilson (22) championed its use for water analysis, and
Currie (23) provided an approach for detection and quantification
in analytical and radiochemistry. The reference by St. John (24)
has been one of the most cited of those based on signal/noise,
though it does not address the error of the second kind (false
negative). Nicholson (25) gave one of the earliest treatments for
extreme low-level (Poisson) counting data, and Grinzaid (26)
offered a robust treatment not requiring the assumption of any
specific distribution. Litcanu’'s frequentometric method (8) was
also distribution-free, in the sense that an experimental estimate
of the detection limit was derived from the observed fraction of
false negatives, using a regression technique. The paper by Ingle
(27), which was obviously designed ta he tutorial (published in the
J. Chemical Education) is noteworthy in that it suggested that the
concept of the error of the second kind (which is intrinsic to the
statistical theory of hypothesis testing) was simply too complex
for ordinary chemists to grasp! Regrettably, there seems to be
some support for 'such a statement; but Hypothesis Testing is one of
the keystones of every elementary course in Statistics, so its
formal introduction into the education of the analytical chemist
would seem not too esoteric a step.

An exhaustive vreview of the definition and application of
Detection Limits for nuclear and analytical chemical measurements
was published in 1984 (28). The reader may wish to scan the titles
of the papers there cited, to gain further insight regarding basic
Principles and terminology, counting statistics, non-counting and
non-normal random errors, random and systematic variations in the
blank, Bayesian approaches, reporting, averaging and censoring
treatments, optimization, influence of alternative spectrum
deconvolution techniques, etc. In the body of Ref. 28 special
attention is given also to topics such as simple and multicomponent
nuclear spectrum fitting and extreme low-level counting.

With respect to IUPAC, both the position published in 1976

{22}, which addressed nomenclature, syubols and units in analytlical
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optical spectroscopy, and the more general analytical nomenclature
document, now in review (30), treat detection from the hypothesis
testing viewpoint. A non-conceptual difference lies in the choice
of the risk level (false positives and negatives). The 1976
report, which grew out of Kaiser's work, used a fixed value of 3.00
for the standard deviation multiplier (S/N) for detection deci-
sions. This would correspond to a false positive risk of 1-0.9986,
or 0.14% (l-sided test), if the population were normal, and o
known. (The false negative risk B was not explicitly treated.)
The current IUPAC Nomenclature Document rccommends risk levels («,
‘B) of 5%, corresponding to a multiplier of 1.645 for o known, .
normal population. Both documents recognize the effects of varying
degrees of freedom in estimating the variance of the blank; the
latter document specifically recommends the use of Student’s-t to
compensate, just as is done in the construction of normal
confidence intervals.

The historical evolution of this topic has resulted in some
very unfortunate and needless confusion in both terminology and
concept. Awareness of the nature of this confusion is crucial, if
we as analytical scientists are to arrive at a common and meaning-
ful approach to detection, an approach that can serve society
rather than add an extra level of confusion to a topic which the
public regards as already complicated, albeit important.

The facts are that for at least the last decade or two there
has been broad international support for the hypothesis testing
framework for making analyte detection decisions, and evaluating --
especially for purposes of deslgn and planning -- the inherent
detection capabilities of measurement processes. In this context,
a number of authors and institutions have employed terms like
"detectlion limit" (or "limit of detection") to denote the latter,
inherent detection capability, generally in units of concentration
or amount (8.12.17. 21-23, 25.30.36). In the earliest work of some
who most strongly came to support the hypothesis testing model,
however, the notion of the false negative [8 - error] did not
appear (31). Kaiser in particular labeled his threshold level "Die
Nachweisgrenze," 'or Detection Limit. In 1965 Kaiser treated the
second kind of error (B), and introduced "Die Garantiegrenze fur
Reinheit" as the corresponding true concentration level for the
alternative hypothesis (32). Kaiser's impact on the field of
Analytical Chemistry has been extremely significant, and it is not
surprising that many chemists have adopted his terminology for the
Detection Limit. It has been adopted, however, in many cases to
indicate not just the signal/noise level for making detection
decisions, but also as a measure of the inherent detection
capability of the measurement process in question. Since the error
of the second kind [B] exists whether it's recognized or not, this
practice has led to a de facto false negative risk of 50% -- a
value which is totally out of balance with a false positive risk of
0.14%, or even 5%! Thoughtful and lucid critique of this matter
may be found in Ref’s. 8 (p. 263) and 14. A curious footnote to
this discussion is that one scarcely ever encounters Kaiser's
second term, "Limit of Guarantee for Purity," in the scientific
literature.
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On the subject of nomenclature, a word concerning historically
used terms for the detection decision point or level is in order.
As stated immediately above, a number of analysts, following
Kaiser, use "Limit of Detection" or "Detection Limit" as both the
measure of (true concentration) detection capability and as a
statistical critical level or threshold to make detection deci-
sions. Following established practice in Statistics, the term
"Critical Level" was recommended in (23). "Criterion of Detection”
has been employed by Wilson (22); and Liteanu (8), who speaks of
the "decision criterion" as a strategy, terms the numerical
comparison level the "Decision (or Detection) Threshold."

The great majority of the authors cited in the foregoing
discussion emphasized that the detection limit must refer to the
entire analytical measurement process. In many cases one finds
that not the case -- i.e., workers may refer (sometimes appro-
priately and intentionally) to just the instrumental measurement
step, or to ideal, pure solution detection limits -- both of which
may be far too optimistic for real, complex samples. Some compila-
tions indicate "typical" detection limits, an acceptable practice
provided the measurement process and sample nature (including
matrix and interference effects) are rigidly controlled and
subjected to appropriate ruggedness testing.

2.1 Present State of the Art. A perusal of the analytical
literature two decades ago revealed considerable disparity in the
specification of detection limits. This is shown in Fig. 3 which
is reproduced from (23). Then current definitions spanned nearly 3
orders of magnitude when applied to the same measurement problem!
Concern for such definitional (and/or conceptual) disparity has led
a number of national and international organizations to address the
need for a common, rational basis for treating this matter.
Because of concentration related effects of trace chemical species
on health, properties of high purity materials, and even global

climate, relative detection limits for different measurement
processes are not enough; detection capabilities must be assessed
in absolute units. Awareness of the confusion surrounding detec-

tion limit practices, by organizations such as IUPAC, IAEA, ACS, a
number of US regulatory agencies, and more recently CODATA (Commit-
tee on Data for Science and Technology) is a very positive thing.
The difficulty and importance of the task is highlighted by several
of the authors in this volume, notably: a) Crummett (33) ("In
spite of extraordinary efforts (on the part of scientific societies
to properly define detection limits) analysts continue to present
their results in forms which cause the credibility of the data to
be questioned or the meaning to be misinterpreted"]; b) Brossman
(34) ["Attempts by our task force on low-level data to make a

rigorous conceptual and statistical comparison ... have been
unsuccessful. Even similar terms are defined in different,
non-comparable ways..."]; and c¢) Currie and Parr (35), where it was

observed that international interlaboratory comparisons involving
the same bioenvironmental reference materials resulted in mutually
exclusive results. For example, quantitative results for arsenic
(in horse kidney) were reported by some laboratories at levels
which exceeded the "detection limits" of other laboratories (which
detected no arsenlc) by as much as 4 orders of magnitude!
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Incidentally, the Brossman task force epitomizes a very serious
problem: the coding of data into computerized data bases. Such
data bases will doubtless have significant distributions and
lifetimes, so the effects of possible distortions and information
loss will be unfortunately amplified.

Understanding and acceptance of the Thypothesis-testing
position taken by IUPAC (29.30), the US Nuclear Regulatory Commis-
sion [28], the UK Water Research Centre (36), the IAEA, and
reflected in many of the recent texts in Analytical Chemistry and
Chemometrics (37), promises to resolve the needless, current
disarray. Some of the current diversity can be seen in Fig. 4,
which presents four of the principal detection limit definitions in
vogue (and/or in regulatory guides) in the U.S. Comparisons among
the statements, together with the supporting documents, show that:
(1) the B error (false negative) is ignored in all but one, causing
it to assume a de facto value 50%; (2) treatment of the blank is
ambiguous or absent in two of the definitions, and restricted to
the reagent blank in a third; and (3) a uniform approach to the ¢
error, taking into account the number of degrees of freedom and
Student’s t is lacking. There is some irony in the fact that the
fourth definition states that the LOD is "the lowest concentration

statistically different from a blank", in view of a comment in
the reference cited (Long and Winefordner, 1983). These authors
note that the "well-based but seldom used concept in the calcula-
tion of detection limits ... the limit of guarantee for purity, c;,
described by Kaiser ... [represents] the Ilowest statistically
discernable signal." Long and Winefordner go on to show that the
original IUPAC definition (29) and the LOD of reference (1l6) indeed
yield 50% false negatives (8). Kaiser's cgz, incidentally, is
conceptually identical to Currie’s L; (23) and Boumans’ "Limit of
Identification" (15).

In addition to the above, one continually finds varying ad hoc
or even undefined usage in the peer-reviewed analytical literature.
For example, three recent papers, examined because of interest in
their chemical content, all deemed detection limits of sufficient
importance to include numerical tabulations. However, the first
author stated that his detection limit represented a signal to
noise ratio of 10; the second defined it as twice the standard
deviation of the background signal; and the third gave mno
indication as to his meaning.

In conclusion, it is urgent that the analytical community
adopt a uniform and defensible approach to the concept of detec-
tion. Apart from ad hoc or unstated procedures, failure to
recognize the error of the second kind [B] -- i.e., failure to
distinguish between detection decisions and detection capabilities
-- is the most serious conceptual fault, placing false negatives at
the level of coin-flipping accuracy. Failure to take into account
all major sources of error, especially the nature of the blank, is
the most serious measurement fault. A review of some of the more
critical assumptions and technical 1issues related to wvalid
detection limits follows.
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Lower Limit of Detection (LLD). "The LLD is defined, for purposes
of these specifications, as the smallest concentration of the
radioactive material in a sample that will yield a net count,
above system background, that will be detected with 95%
probability with only 5% probability of falsely concluding
that a blank observation represents a "real" signal" (94).

Tnstrumental Detection Limit (IDL). "The concentration equivalent

to a signal, due to the analyte, which is equal to three times
the standard deviation of a series of ten replicate measure-
ments of a reagent blank signal at the same wavelength" (95).

Method Detection Limit (MDL). "The method detection limit (MDL) is
defined as the minimum concentration of a substance that can
be measured and reported with 99% confidence that the analyte
concentration is greater than zero and is determined from
analysis of a sample in a given matrix containing the analyte"

(26).
Limit of Detection (LOD). "The limit of detection (LOD) is defined

as the lowest concentration level that can be determined to be
statistically different from a blank. The concept is reviewed
in [ref. 38] together with the statistical basis for its
evaluation. Additional concepts include method detection
limit (MDL), which reters to the lowest concentration of
analyte that a method can detect reliably in either a sample
or blank, and the instrument detection limit (IDL), which
refers to the smallest signal above background noise that an
instrument can detect rellably. Sometimes, the IDL and LOD
are operationally the same. In practice, an indication of
whether an analyte is detected by an instrument is sometimes
based on the extent of which the analyte signal exceeds peak-
to-peak noise" (16).

Fig. 4. Four Definitions for Detection Limits Related to
Current U.S.Regulatory Practice.
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3. DEPTH: Limitations, Assumptions, and Technical Issues

The foregoing text represents a brief overview of some of the
societal, historical, and broad conceptual issues trelating to
detection and chemical measurements. Here we offer an overview, in
catalog or dictionary format, of a series of technical issues
directly related to the estimation and validity of analyte detec-
tion limits. Balanced coverage has been the intent, but special
attention has been given to topics not covered elsewhere in this
volume, and to questions arising in discussions or put by "users"
of detection limits. In some cases, this led to the introduction
of new material such as multiple decisions and probabilistic
pattern detection, utilization of physical constraints (on
variance), and some effects of varying probability density func-
tions [pdf] as related to experimental design and ¢ variation. The
discussion is divided into three parts: the first, considering
issues affecting the validity of detection decisions [null hypothe-
sis testingl: the second, considering the type II error [B] and
detection for the alternative hypothesis; the third, considering
multiple detection decisions and Discrimination Limits for chemical
species and chemical patterns. A guide to the topics presented in
this section is given in Fig. 5 [Note 3].

3.1 Null Hypothesis Testing -- Assumptions and Conclusions. When
an experiment is performed, we test the experimental result (X) by
comparison to the critical level or threshold (%) to decide
whether or not analyte has been detected in excess of the blank or
background level. Quite apart from questions involving the
alternative hypothesis or detection limit, two crucial points must
be kept in mind concerning the nature and validity of such a test.
The first is that the Statistical Test for Significance, at
significance level «, is based on exactly the same principles as
the more fashionable calculation of Confidence Intervals, at
confidence level 1l-a (39). (In both cases, of course, one must pay
attention to 1l- vs 2-sided tests or intervals.) The second point
follows: that assumptions affecting the validity of experimental
confidence intervals are just as important for the wvalidity of
significance tests. Assumptions which demand our attention include
the following: control ([i.e., existence] of the measurement
process; possible systematic model [functional] or measurement
error; and properties of the random component (or components) of
error -- i.e., form of the distribution [pdf or cdf], parameters of
the distribution [o2?,...], "color" of the noise (or noise power
spectrum), and non-stationarity (changes with time) and hetero-
scedasticity (changes with concentration or other experimental
parameters). Errors may arise also from uncompensated changes in
the measurement process itself, such as alteration of the calibra-
tion [functional] model or random error model [cdf] due to chemical
matrix effects or interference. No less important are the computa-
tional and data reporting strategies; these represent. intrinsic
parts of the overall measurement process. A brief catalog of

selected hypothesis testing and experimental result related issues
follows.
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Detection Decisions, o-error [3.1
(assumptions, validity)

|——BASIC ERROR ISSUES

systematic error [3.1.1]}
normal random error [3.1.2-.3]
non-normal [3.1.4-.5]

paired comparisons [3.1.6]

L ——MEASUREMENT PROCESS ISSUES

background, baseline, blank [3.1.7]

error components, truncation [3.1.8-.10]
evaluation process, calibration [3.1.11-.12]
reporting low-level data [3.1.13]

artificial thresholds [3.1.14]

Analyte Detection Limit, B-error [3.2]
(estimation, power)

\— DETECTION LIMITS AND POWER
ignorance of B-error [3.2.1]
lower, upper L;’'s [3.2.2]

o, B connection (ROC) [3.2.3]
power of the t-test [3.2.4]

——UNCERTAINTY IN L, [3.2.5-.6]

L—SPECIAL TOPICS

optimization [3.2.7]

multicomponent detection [3.2.8]

random error variation [3.2.9]

quality (algorithms, controls) [3.2.10-.11]

Discrimination Limit; Multiple Decisions [3.3]

DISCRIMINATION LIMITS
lower and upper regulatory limits [3.3.1]
impurity detection [3.3.2]

MULTIPLE DECISIONS, IDENTIFICATION
multiple detection decisions [3.3.3]
multichannel identification {3.3.4]
multivariable patterns [3.3.5-.6]

Fig. 5. Topical Guide to Technical Overview.
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3.1.1 systematic and model error. Bounds for uncompensated,
non-random errors must be allowed for by a corresponding increase

in the critical level or confidence interval. This makes a an
upper limit if the systematic bounds, which need not be symmetric,
are given as upper limits. The validity of the corresponding

uncertainty interval clearly depends heavily on the Chemical
Intuition or scientific expertise employed, for example in
identifying the range of possible alternative models.

3.1.2 normal (white) random noise. If o is known, L.=2z,_,0.,
where o, represents the standard deviation of the estimated net
signal (23). If "simple" detection [gross signal - blank] is
involved, where the blank is estimated from n equivalent observa-
tions, and the gross signal from one, then o, = o5 J(ntl)/n -- oy
being the standard deviation of the blank. [Note that zero
adjustment, as for the null level or baseline of a (recording)
galvanometer, chromatograph, spectrophotometer, etc., does not
eliminate the need for this blank or baseline estimate error
propagation. Of course, o, may be scarcely greater than oy when a
large span of linear baseline is quite precisely adjusted, for
example, by least squares fitting or by graphic or even "eyeball”
subtraction. A related point: the (detection) test must be
applied to the net signal, or equivalent concentration estimate,
because only that has an expected value under the null hypothesis
of exactly zero. Imprecise knowledge of the mean value for the
blank distribution prevents a rigorous test being applied to the
gross signal. See comments below on the background, baseline, and
blank.]

3.1.3 ¢ unknown (normal). Student’s t replaces z when o is
estimated by replication. L. now equals ts. [Note that L; here,
unlike L;, is no longer a comnstant, because s (estimate of o) is a
random variable. Note also that o (or s) as used in this text
refers to the standard deviation of the "final" signal; if signal
averaging or least squares fitting is employed to arrive at the
final signal, then this should be interpreted as the standard
error. ]

3.1.4 non-white mnoise. The autocorrelation function (or
spectral power density) must be taken into account in calculating
critical levels or confidence intervals. This is not a trivial
matter, and is remarkably often ignored. Its importance is seen
most often for time dependent phenomena [e.g., in chromatography],
and where "flicker noise" is found. Note that noise of this sort
sets limits to the gains which may be achieved through signal
integration or averaging. Note also that detection limits based on
the Signal to Background Ratio derive from the assumption of
background-carried flicker noise dominance. See especially Smit
(40) and Epstein (41) for important discussions of this topic. Im
a broader sense the underlying fissne relates to the limit in the
information content of sets of observations which are not fully
independent. One encounters it also when interpreting uncertain-
ties for count rate meters (RC signal averages - (28, p. 96)), and
uncertainties in functions of partially correlated random variables
[error propagation, including covariance: (42)]. The topic is of
special relevance when considering instrumental baselines [see
below].
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3.1.5 non-normal distributions. This problem can be dealt
with rigorously if one knows the form of the random error distribu-
tion. A notable example of this occurs in "counting" experiments
(e.g., radicactivity), where the physics of the process implies
Poisson statistics. As the Poisson distribution is discrete, y,
(the critical level for gross counts) takes on integer values only,
and o is generally in the form of an inequality -- ie, a = 0.05
(28). Distribution-free techniques, especially those based on
order statistics (such as the median and its confidence interval),
and transformatlon techniques (eg, for log-normally distributed

errors), are often appropriate (26.57). So-called non-parametric
techniques -- the Gauss or Chebyshev inequalities, give (2-sided)

a's as no greater than (2/[3k])? and 1/k? respectively, where the
standard deviation multiplier k replaces z of the normal distribu-
tion. Note that the Gauss Inequality is applicable for random
variables having unimodal, continuous, and symmetric density
functions, whereas the weaker Chebyshev Inequality is valid for any
distribution having finite mean and variance. A small problem in
applying the inequalities is that k must multiply o, and o is not
generally known. Although s?2 is an unbiased estimate for ¢? even
for non-normal distributions, bounds for s/o are distribution
dependent and therefore also not generally known. [Note 4.]
Difficulties are compounded when the measurement process consists
of two or more steps comprising different kinds of pdf’s. [See for
example, Johnson, Ref. (44).]

Recommended solutions for the non-normality problem are: 1)
use the percentage points of the actual pdf, if known; b) transform
to normality; c) use order statistics; d) design the experiment to
take advantage of "pairing®” and the Central Limit Theorem. The
last approach, which looks very attractive for chemical research,
will be discussed below. Information on the other approaches may
be obtained from specialized statistical texts (45).

3.1.6 paired comparisons; Central Limit Theorem. The Central
Limit Theorem makes quality control charts work. Here, one charts
sets of averages of observations and checks for excursions beyond
Normal control limits. The averaging is done not primarily for
standard error reduction, but to assure (approximate) mnormality.
It can be shown that averages (or sums) derived from of a sequence
of  mutuslly independent  random variahles  Thaving a common
distribution tend toward normality, often rather quickly (by the
time n = 3 or 4). This "Central Limit Theorem" is valid regardless
of the shape of the initial distribution, so long as it has finite
variance. The rate of approach to normality, however, depends on
the initial shape, being faster for symmetric distributions (453).
For low-level chemical measurements, all too often the blank, which
forms the basis for the detection decision, is mneither
symmetrically nor normally distributed -- especially when the blank
is due to environmental or particulate contamination (46). Very
wrong trace analytical confidence intervals and detection decisions
may result. By designing the measurement process so that proper
paired comparisons can be made (45, Chapt. 4), one can at the same
time achieve the best statistical sensitivity and force symmetry
(for the estimated net signal), and thus set the stage for
approximate normality for averages of such estimates. Two other
major reasons for forcing symmetry in this way are: a) to take
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advantage of the median and its confidence interval for robust
estimation, and b) to make possible the use of the Gauss Inequality
for distribution free interval estimation. This approach has been
suggested, for example, as a possible solution to the severe
detection discrepancies obtained in TAEA intercomparisons (35).
Specifically, the recommendation is to make detection decisions by
comparing the averages of at least n=4 paired comparisons (gross
signal - equivalent blank signal) with ts//n, where s® is the
estimated variance of the n net signals. (Note the direct analogy
between the chemical blank measurement, and the "control" observa-
tion which plays a central role in clinical and psychological null
hypothesis testing.) In anticipation of the next two topics, two
related advantages of proper pairing (or equivalent fitting) may be
stated: a) bias associated with systematic B-changes is minimized
by taking "local" differences (y - B) and using local values for
recovery and instrumental detection efficiency; b) effects of
imprecision associated with certain "external” random variations
(e.g., "between-day") may similarly be avoided.

3.1.7 Dbackground, baseline, blank. The variability of the
null signal [B] is the determining factor in making valid detection
decisions (H, tests) or in deriving valid confidence intervals for
low-level signals. In the ideal interference free, "pure solution"
measurement environment, the instrumental background 1is the
ultimate limiting factor. 1In this sense an "instrumental critical
level" (decision level, threshold) and the corresponding detection
limit mark the besct possible performance of a eystem. Two cautione
are in order, however. First, the instrumental noise (background
variability) may not be white -- i.e., there may be long- or
short-term variations which must be compensated for by appropriate
modeling and/or astute paired comparisons. Second, when the
chemical, physical, or geometric configuration of the final sample
changes, there may be corresponding changes in the effective
background (for example due to changes in external scattered
radiation). Instrumental detection efficiencies or responses may
also be perturbed by such sample-related factors (47), but that is
a "calibration" matter, to be taken up separately.

Multicomponent instrumental responses, unless totally
selective, generate spectral or chromatographic baselines which
arise from complex physicochemical phenomena ranging from multipie
(sample) particle or radiation scattering to component tailing,

depending on the specific analytical technique involved. Such
baselines generally subsume any instrumental background, and thus
become the limiting factor. Valld nei signal estimates and detec-

tion decisions then become critically dependent on accurate
modeling of the baseline functional shape and noise structure.
Empirical baseline shape models are common, the linear model being
most used. Deviations from linearity may be modeled using low
order polynomials or splines, but since the modeling is empirical
one must be alert to possible model errors, such as unanticipated
fine structure (48). The noise structure of the empirically
modeled baseline deserves special attention in the case of drift,
preferred periodicity, or more general autocorrelation such as "1/f
noise" (40.41.49).

For all real chemical measurements, the chemical blank is the
actual limiting factor. To assess its magnitude and variability,



1. CURRIE  Overview of Historical, Societal, and Technical Issues 23

there is no better approach than to apply the entire measurement
process to an adequate number of real blanks. Unfortunately, this
ideal may not be realizable, as it requires samples which are
identical to those of interest in all respects except for the
absence of the target analyte. The alternative approach is to
attempt to "propagate" the components of the blank for each step of
the CMP, taking into account the points of introduction, and
subsequent recoveries and CMP-induced variationms. This topic is
enormously important and enormously complex. One must consider
simultaneously: the effects of multiple blank sources; analyte,
blank, and interferant recoveries for each CMP step; and
instrumental detection efficiencies plus matrix effects for each
(35, 50-52). A small complication arises from the fact that
different types of blanks may exhibit different pdf’s. Reagent and
sample preparation blanks tend to be normally distributed, while
environmental blanks are frequently log-normal (44,46.53). In the
final analysis, of course, actual variations in the blank are

convolved with instrumental mnoise. Lack of independence or
normality for either will be reflected in the final, effective
blauk distribution. A final obocrvation: eystematie or random
error in the estimated blank affects not only detection limits and
confidence intervals for "low-level" samples; it may also limit
the accuracy of high precision, "high-level" samples.

3.1.8 internal vs external error: propagation vs
replication. The uncertainties of 1low level concentration

estimates may be derived from error propagation for each stage or
step of a compound CMP, or they may be deduced from replication
and comparison with low-level SRMs for the overall measurement
process, as in laboratory intercomparisons. Consistency between
the two approaches is essential for the uncertainty estimates to be
considered wvalid. Among the error characteristics that may be
exposed through such ANOVA type testing are: "excess" random error
[o,], systematic error [A], and covariance among internal errors.
The first (o,) might represent, for example, a between day or
between lab variance component, or in the case of Poisson counting
statistics, an excess or non-counting component of random error.
The second (A) could be manifest as the difference between the
limiting mean for an intralaboratory measurement and the true
(e.g., SRM) value. The third might be seen if internal, non-white
noise or other error correlation effects were improperly accounted
for in error propagation; the external estimate, derxived £from
independent replicates would automatically compensate for such
(internal) behavior. Comparison of internal and external estimates
has its limitations, however. This is shown in Fig. 6 [(o,,8); vs
n] which displaye the.detection limits for o, and A as a function
of the number of replicates (54). Thus, in order to detect bias
equal in magnitude to the standard deviation, one needs at least 12
degrees of freedom (13 replicates). To detect an extra variance
component equal in magnitude to the known internal precision
[(6,)p=0;], one needs 46 degrees of freedom (55). These error com-
ponents [o,, A] must, however, be taken into account if wvalid
detection decisions are to be made.
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3.1.9 internal error precisely known: improved detection

decisions (and confidence intervals) using inequality constraints.

If the excess random error component is well known, then obviously
error propagatioﬁ can be applied -- e.g., V, =V, + V. -- to
calculate the total variance V,, which is the quantity that must be
used for calculating the critical level or confidence interval.
(For notational simplicity, V is used here to denote variance, in
place of 0%, If multiplicative rather than additive relations are
involved V would represent relative variance.) Quite frequently we
find it relatively inexpensive to obtain precise estimates of V,
(internal variance) whereas external replicates -- e.g., between
laboratories or between days, etc., -- tend to be more costly,
hence fewer. Perhaps the extreme case of this sort occurs with
Poisson counting statistics, where V; =~ N where N is the observed
number of counts. If expected value of N is sufficiently large
(e.g., >60) the expression yields a reasonably good estimate for
V,, as good as would result from 100 or more replicates. If V, is
taken to be 2zero, the critical level may then be calculated
directly from V, which here is estimated as the number of counts
[Note 5]. co :

If V., is not known, we have three alternatives. One of
extreme conservatism would be to use the lower and upper limits for
V,, based on replication [sz=est(Vt)] and knowledge of V,.
Intermediate, and most common, is simply to calculate L, as tes,
where t is based on the external number of df (number of replicates
minus one). More interesting is the use of our knowledge that
V,20, and a variance weighted t. (A fourth alternative, ignoring
the possible existence of V, is all too common; the unsupported
assumption that counting statistics or' other internal instrumental
variance fixes the overall imprecision can generate L.'s and CI's
that are too small and correspondingly large false positive
probabilities.)

The merit of the variance weighted t technique is that it
permits us to use our excellent knowledge of V; together with the
fact that V, cannot be ncgative to obtain a significantly smallex
L. or CI than we would using s? directly. It provides protection
against unanticipated external random error with little penalty if
that error component is in fact negligible. The technique sug-
gested here is tentative and approximate, but it appears to be
conservative and‘asymptotically correct [Note 6].

To illustrate, let us consider triplicate measurements of a
sample using a counting technique, such as ion counting mass
spectrometry or photon counting in optical spectrometry. X-ray
fluorescence analysis or gamma ray spectrometry. Internal variance
derives from Poisson counting statistics [V,] where the appropriate
value of t; equals its normal limit z; or 1.645 for o = 0.05.
Total variance [V,] for the 3 replicates is estimated as s?, where
ty is 2.92 for 2 df. Excess variance [V,] is V¢-V;, and estimated
as s2-V,, with the constraint that V, may not be negative. L.’ (or
CI) is calculated as t’s’//n where:

s!' = Q/Vi +V, 2zo;, i.e., s' =max (o,,s) (1)
to=t (Vi /) +t (V,/V,) , (2)
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For the example at hand, we estimate V, as sz—Vi. (Eq. 1) thus
yields s'=o; if s = o;, or s'=s if s > o;. (Eq. 2) becomes
£'=1.645 (k) + 2.92 (1-k) where k = 0,2/s?. For example, if o, is
equivalent to 1.75 ng-Ca, and s, to 3.04 ng-Ca, k would equal
(1.75/3.04)% = 0.331. As a result, s' = 3.04 ng-Ca, t' = 2.50, and
Lo'= 4.39 ng-Ca. Investigation of the properties of L' for V,=0
to V, >> V, shows it to be conservative [a’' < 0.05] with a limiting
value when V,=0 of approximately 0.03. Also in this limiting case,
L.’ on the average is only slightly greater (< 10%) than it would
be if one assumed V_ was identically zero, whereas for the conven-
tional approach [L; = 2.92(s//n}} it would be 78% larger. When the
stakes are higher -- e.g., CI's or Lo's for @=0.01 -- the contrast
becomes even greater. In effect, we have used our knowledge of V;
to exclude very small values for estimated total o, and gained
smaller CI's, L;'s, and detection limits in return.

3.1.10 effects of rounding and truncation. Premature
rounding of experimental data distorts its error distribution,
resulting in erroneous conclusions regarding the shape of the
distribution, its parameters [mean, variance], and results of
statistical tests (e.g., detection decisions, quality of fit) and
confidence intervals. The most obvious distortion is that an
inherently continuous distribution is made discrete; the effect is
analogous to "discretization noise"™ which is often found with
multichannel and multidetector array techniques invalving windows
in time, space, energy, wavelength, etc. (56). The tolerable
degree of rounding depends on the distribution. For normally
distributed data, there is about a 10% chance of finding results
within /8 of the mean. Scale divisions much smaller than o/4 are
therefore required if one is to avoid false coincidences, and fits
that are "too good", etc. In fact, clues to excessive rounding or
truncation may be found in x* or F statistics which are unusually
small, or in pdf’s exhibiting unexpected deviations from normality
(57). Abnormality is noted also by Cheeseman and Wilson foxr
constrained balance-point measurements, such as the galvanometer
needle which is physically confined to non-negative scale readings
(36). The importance of these considerations for databases
incorporating low-level results is discussed in (34).

3.1.11 the evaluation process [data reduction: fittingl.
The data evaluation process [EP] is an integral part of the CMP,
and as such it helps define o, and the critical level. It is
perhaps obvlious then that Lg, OI's, and the detection limit will
differ for the very same experimental data, depending on the EP
applied. A simple illustration is found in the fitting of spectral
or chromatographic peaks. One may use the peak height as the
quantitative signal measure, or a model-independent peak area may
be used, or a more sophisticated technique such as linear or
non-linear least squares may be employed to estimate the peak size
according to a selected functional model such as a Gaussian or
skewed Gaussian (58). The point is that without explicit
specification of the entire CMP, including the EP employed, the
detection characteristics of the measurement process are undefined.
Because of this, a slight problem occurs when the EP is given as a
"black box", or algorithm whose characteristics are unclear. (This
issue, including the common availability of executable software




1. CURRIE  Overview of Historical, Societal, and Technical Issues 27

without source code, will be treated further in the discussion of
detection limits in the next section.)

When the EP comprises linear computations (linear in the
observations) such as simple differences, y - B, or linear least
squares or linear multivariate computations, initial normality (of
the observations y) 1is preserved for the estimated quantities.
Non-linear computations, such as arise commonly in iterative model
selection and peak search routines, produce estimated parameters
having non-normal distributions (59). Caution is in order, in
those cases, in applying "normal" values of test statistics to
calculate L. and CI's. (Other factors to consider are the extent
of non-linearity, the level of confidence or significance [l-a],
and the robustness of the statistic in question.)

Finally, it should be noted that an erroneous model will give
erroneous results. This seeming truism is important because models
which pass statistical tests [e.g., x? test of fit] are consistent
with the data but not necessarily correct. Because of multicol-
linearity, model error may go undetected, while producing
significant bias in the results (48).

3.1.12 calibration error. A number of different approaches
may be taken to incorporate the uncertainty in the calibration
factor A into the eritical level. To illustrate, let ueg coneider
the simplest functional relation for the Evaluation Process:

2 = (y-By/A - $/A (3)

Unfortunately, this is already a non-linear relation, so we capnot
expect & to be normally distributed. If the relative error in A is
small (e.g., < 10%) its influence on L. is likewise small, and
deviations from normality are minimal. If the relative uncertainty
iIn A 1s mnot necessarily small, or if it includes possible
systematic error, a straightforward approach is to use the lower
bound for A to calculate an upper bound for L, (here x.) which can
be used to make conservative detection decisions [a < 0.05].
(Incorporation of bounds for systematic error is discussed more
fully in the section on detection limits.)

Error propagation from the fitting of a calibration curve can
be wused to treat detection and interval estimation (almost)
rigorously provided the model is correct -- a caution being that

the intercept-B may mnot represent the blank-B (60.61). An
interesting alternative is to estimate o, and the corresponding
detection characteristics directly for £ [i.e., in units of
concentration] by full replication of the CMP at the levels ol
concern, observing y, B, and A for each replicate. (This is the

"paired comparison" concept extended to calibration, where a blank
and standard is run for every sample.) The statistical properties
of the observed &% distribution ecan then be usod to dircctly
calculate x; [as ts,, if A-variation is mot too great] and estimate
the detection limit. An added benefit of this scheme is that
direct observation of the blank decouples it from the calibration
curve fitting process, so that an assumed straight line model
Tconstant sensitivity A] can be tested by fitting a line [S=Ax+e]
<hrough the origin (62). For valid conclusions, of course, due
attention must be given to interference and matrix effects on both
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rarameters, B and A. An illustration of an observed % distribution
for the null hypothesis [x = 0] is shown for '3!I in (44).

3.1.13 reporting of low-level data. Problems associated with
data rounding and truncation extend to the reporting of final
results. Also, just as in the case of the data evaluation step of
the CMP, reporting must be treated as an integral part of the
overall CMP. Bias and information-loss are the prime considera-
tioms. At. the lower extreme, where x = 0 [null hypothesis]
suppression of negative estimates forces a positive bias, on the
average. Other biases arise when all non-detected results are
reported as zero or as equal to (or less than) the detection limit.
The difficulties are evident as soon as one attempts to: develop a
database comprising large amounts of low-level data (34); to
compute temporal or spatial averages for higher order detection
decisions (28); or to compute average concentrations across
different materials as in the USDIET-1 exercise (63). This last
example illustrates the point: composite samples of the U.S diet
were prepared for measurement of a broad range of essential and
toxic chemical constituents, including the trace element Se.
Comparison of the result for Se in the composite sample [128 pg/g]
with the weighted average from the large number of individual
contributing foods [100 pg/g], showed a significant negative bias
for the latter. This was a result of setting all "trace" observa-
tions (defined as those below a quantification limit, L,) to zero.
Adjusting these upward to 1,/2 led to an improvement [110 pg/g],
but negative bias was still apparent. These kinds of problems can
be completely circumvented if concentration estimates, even if
negative, are always reported together with their uncertainties
(64, 65). Detection decisions can be made by comparison with L.,
and upper limits may be given as & + ts//n.

3.1.14 thresholds. The threshold for discriminating "real
signals" from blanks may be set in various ways. The only way that
is consistent with the relation between confidence intervals and
significance tests is the one described, L, = ts. Other techniques
include the use of a constant multiplier ks or ko, with k = 3 a
popular choice; and use of a fixed threshold signal or concentra-
tion, such as 1 mV or 2 ng. A drawback of these alternative
techiuiques is that they seldom recognize the existence uvr magnltude
of the @-error, which, however, does exist, and which will take on
varying values depending on the number of degrees of freedom or the
magnitude of the fixed threshold in comparison to o,. For con-
fidence intervale o is conventionally taken ae 0.05, so there ceeme
little justification for depressing it by a factor of forty to
0.0013 (corresponding to 3¢) for detection decisions [o-known], or
by more than a factor of ten (corresponding to 3s) for 20 degrees
of freedom. TInstruments having hardware or software discriminators
may have resulting dead zones which correspond to vanishingly small
a’'s. In one case recently, the threshold was set so high that a
was beyond the range of any of the statistical tables, L./o, = 34;
in fact the threshold was so high that the critical level exceeded
even the conventional limit of quantification -- i.e., the RSD at
L. was but 5% (&1, p. 76, case-e)! Such high and varying thresh-
olds for detection decisions lead both to needless confusion and to

measurement processes operating far short of their inherent
capabilities.
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3.2 Matters Concerning the Error of the Second Kind., and the
Analyte Detection Limit. The concern in the preceding section was
the validity of detection decisions, based on comparisons of
experimental outcomes [estimated signals or concentrations] with
appropriate critical levels or decision threcholds. Here, we turn
to issues concerning the inherent detection capability of the CMP
in question -- that is, the true signals or concentrations which
can be detected with, for example, a 95% probability [B=0.05],
given the critical level (or equivalently a) to be uséd for testing
observed results. L; is thus tied intimately to 8, and to o or L.
Although a significance test may be performed with no consideration
of H, or the detection limit, L, is ambiguous without the specifi-
cation of B and o (or L;). That is, for a given L, there is an
infinite set of possible @, B pairs. Passing a significance test
-- e.g., & = %, -- is commonly said to mean "acceptance" of the

null hypothesis -- i.e., x = 0. This is unfortunate terminology,
for only consistency with the null hypothesis has been
demonstrated. "Proof" of the null hypothesis (within certain fuzzy

bounds) demands attention to all possible alternative hypotheses
H,; that 1is the test in use must be sufficiently powerful to
"detect" [B =< 0.05, given a« = 0.05] H,. A major reason for
interest in detection 1limits is thus to allow us to select or
design a measurement process having the capacity to detect signals
or analytes at prescribed levels of importance. An overview of
selected technical issues follows.

3.2.1 ignorance of the error of the second kind (B). False
negatives occur whether their existence is recognized or not. The
common practice of making detection decisions at the so-called
detection limit, or LOD, etc., has the effect of setting L, = L.,
with the result that g = 50% -- equivalenlt Lo Lhe proverblal flip
of the coin. With a o-coefficient of 3, @ may be as small as
0.0013, resulting in an imbalance [B/a] of a factor of nearly 400!
Ignorance of this matter makes possible inadvertent or even inten-
tional misrepresentation of detection capability. For oxample, the
subtle trade-off between a and S could be employed to avoid
penalties for false positives associated with an inadequately
controlled blank.

3.2.2 lower and upper detection limits. For certain types of
chemical measurements there are dual null hypotheses and
consequently dual L.’'s and L,’s for concentrations differing from
these null levels. Examples are found where a lower limit is set
by background noise, and an upper limit, by some type of maximum
signal limitation such as instrumental detector saturation. A dual
illustration is shown in Fig. 7 for two exponential phenomena,
radioactive decay and radiation absorption. In each case the lower
L, is given by the smallest detectable difference from a comparator
(zero age standard or blank solution), and the upper L, is given by
the smallest detectable difference from an infinitely old sample
(no net emitted radiocactivity) or an infinitely absorbing sample
(no net transmitted radiation. )

3.2.3 the ¢ - B connection: 0C and ROC curves, and detection
power. A convenient way to visualize the relationship between
false positive [e] and false negative [B] errors and the normalized
dlfference [d] between the means of two populations for a given

Or e e L S I S
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to us from bLE,lldL deteciion LllCULy L21.
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Fig. 7. Lower and Upper Detection Limits. When a measurement

process has both minimum and maximum signal bounds, as in radioac-
tive decay and optical absorption spectrometry, LLD and ULD must
both be considered. Dashed line signal lower and upper detection
limits map onto the age and concentration lower and upper limits
(arrows) via the exponential function.
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In this theory the Receiver Operating Characteristic [ROC] curve
for a given test traces the relationship between the true positive
probability [1-B] and the false positive probability [a] for a
given mean normalized signal difference d. Another representation
of the relationship, denoted the Power Curve in statistics, is the

curve which traces the relation between Detection Power -- which is
synonymous which the true positive probability [1-8] -- and the
difference d, for a given value for a. (The complementary

relation: B vs d, given a, 1is described in statistics as the
Operating Characteristic [OC] curve.) Fig. 8 shows the normal ROC
curve for d = 3.29 in units of o, [i.e., the detection limit], and
the power curve for o = 0.05. The former [ROC] representation is
the more convenient for the comparison of tests and the selection
of alternative a, B pairs, for a given difference in population
means. For this reason, it is used to compare the diagnostic power
of alternative tests in clinical chemistry, where there are two
discrete populations [d - fixed] (66). It may be useful also for
examining the value of a test or the selection of an “"optimal” a, g
pair in a regulatory setting where, for example, a specified
difference [d;] is of concern. Also, if the sources or identities
of chemical species are characterized by unique element or isotope
ratios, an ROG curve could be used to represent the discriminating
power of selected measurement techniques. The second [Power curve]
representation is more appropriate when one is interested in the
detection power as a function of (net) signal level or concentra-
tion. Thus, it is clear from the curve that the power is but 50%
when d = 1.645. A second scale on the abscissa makes it convenient
in this representation to see the relation in  units of
concentration.

OC and power curves are regularly used in the evaluation of
statistical tests (67.68). Similarly, one finds ROC curves
employed in medicine and psychology [12, discussion & references in
Chapt. 25]. They appear to be little used in Analytical Chemistry,
though Liteanu and Rica have proposed the use of different two
dimensional projections of the three dimensional relationship [a
B, d] as representations of the "detection characteristic" (8).

3.2.4 power of the t-test. The three dimensional
relationship described above is expanded to four for Student’s t,
with the addition of the number of degrees of freedom. If we
restrict our attention to the detection limit, by fixing « and B
both to 0.05, the remaining two dimensions can be viewed as a
curve, d vs df -- i.e., the detection limit (in units of o,) as a
Lfunction of the number of degrees of freedom, where t;.q 1s used
for making detection decisions. In this case, the value of d is
determined by requiring a 95% probability (1-8) that the estimated
net signal divided by its estimated standard deviation [(y-B)/s,]
will exceed the critical level for Student’s (. This ratio 1s
called the non-central t, with non-centrality parameter d, because
it is displaced from zero by this amount. The net signal detection
limit is given by do,. Another important application of the
non-central t distribution has been to test the validity of
presumed detection limits, for example, in connection with medical
diagnostic devices (69).
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Fig. 8. Detection Power. ROC and Power (or OC) curves yield

a graphical display of the relations among detection limits
(detectable differences, d), and errors of the first (@) and second
(8) kinds. Fig. 8A is the ROC curve corresponding to two normal
populations differing by L, -- i.e., the separation equals 3.29 o,
and the curve passes through the point o=g=0.05. Fig. 8B is the
corresponding power curve, where now o« is fixed, and the power of
the test is given as a function of the normalized distance d. The
lower abscissa shows the equivalent concentration scale for a
hypothetical measurement process for Ca, where o, equals 20 ng, and
the detection limit is 66 ng.
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when df is very large, d is simply 2z or 3.29. For fewer
degrees of freedom, 2t yields a conservative estimate, but a still
better estimate derives from the following expression (68, p. 252):

d =~ 3.29 (1 + 0.71/4df) (4)

This formula is accurate to about 1% or better for df = 8. For 4 -
7 degrees of freedom the correct values are 4.07, 3.87, 3.75, and
3.68. To illustrate, let us suppose that 5 paired y, B
observations were made and the mean difference and estimated
standard error were 1.8 * 1.2 mV. The critical level for 4 degrees
of freedom would be ts = (2.13)(1.2) = 2.6 mV, so the conclusion

would be "not detected." The detection 1limit would be do, =
4,070, . Using s as an estimate for o, we would estimate L, as
(4.07)(1.2)=4.9 mV.

3.2.5 uncertainties in detection limits. The previous

example raises an extremely important point, namely, that unless o,
is known without error, the detection limit cannot be exactly
known. This is in contrast with the ecritical level, which can
always be explicitly calculated from Student’s t and the estimated
standard error. We can, however, derive a confidence interval for
L, from the bounds for o, given s and df. For normally distributed
errors these bounds can be derived from the x* distribution. (s?/0%
is distributed as x?/df.) One finds, for example, that at least 13
replicates are necessary to obtain s within 50% of the true ¢ (90%
confidence level).

For practical application of detection limits -- e.g., in
meeting a research or regulatory requirement -- a "safer" procedure
is to quote the upper limit for L;. This in effect casts the

uncertainty onto B, in that a specific value (rather than a range)
can be given for the detection limit, but with the proviso that
p<0.05 (with 95% confidence). A straightforward, conservative
treatment for detection decisions and detection limits when s is
estimated from replication is thus: to use L, = ts (a=0.05) for
detection decigions; and to use L, = 2ts(a/s)y, (a=0.05, £=<0.05) for
detection limits. From the brief table of the relevant quantities
which follows, we see for example with n =10, L, = 1.83 s, and
L,=2(1.83)(1.65)s = 6.04 s (to be compared with 3.29 ¢ for df = =.)
[Table II; from Ref. 28, p. 80].

Table II. L, Estimation by Replication: Student’s-t and (¢/s) -
Bounds vs Number of Observations

No. of replicates: 5 10 13 20 120 ©
Student’s-t: 2.13 1.83 1.78 1.73 1.66 1.645
oy /st 2.37 1.65 1.51 1.37 1.12 1.000

A second source of uncertainty is associated with the
quantities comprising the overall calibration factor A, such as
recovery, instrumental detection efficiency, matrix absorption or
scattering, etc. If A is determined as a random variable each time
X (concentration) is estimated, then there is no problem; its
random error is automatically taken into account through error
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propagation or replication when o, 1is estimated. If the same
estimate for the calibration factor is repeatedly used, its random
error has become a bias, and the bounds (confidence interval) for
this bias combined with other possible sources of A-bias produce an
uncertainty interval in the concentration detection limit. The
recommended approach, again taking into account the practical
applications for detection limits, is to transfer the uncertainty
to B by taking the wupper limit, S,/A , as the concentration
detection limit with g8 =< 0.05.

3.2.6 uncertainty bounds (systematic error) for the blank.
If the possibility of significant bias in the estimated value for
the blank is not taken into account, the resultant detection
decisions and limits may be much too optimistic. An upper limit
for this bias component can be incorporated into S; and S, estima-
tion just as it is in total uncertainty interval estimation, by
extending the random uncertainty (confidence) limit by the upper
bound for bias 4,. Thus, S; becomes S.' = 1.645 o, + Ay, and S;' =
2 8.'. The detection limit increases therefore by 2 Ay. The
rationale for this procedure is indicated in Fig. 9. For a number
of measurement disciplines, experience dictates reasonable values
for relative limits for blank and calibration factor bias [&B,foA] .
Default values of 5% and 10%, respectively, have been suggested
(28)-and tentatively confirmed (57) for radioactivity monitoring,

for example. 1In this case, S;' = 1.645 0, + 0.05 B =5, + 0.05 B,
and x,' = 1.1 (2 S.,')/A = 1.1 x5 + 0.11 BEA, where x; = 3.29 o_/A
and BEA is the background equivalent activity. Thus for paired
measurements with B = 500 counts (o, = J2B = 31.6 counts), and A =
5.0 count/pCi, S;’' = 52 + 25 = 77 counts, and x,’ = 22.9 + 11.0 =
33.9 pCi. Clearly, detection in this case 1is mneither fully
statistical mnor fully non-statistical. Balancing the limits

imposed by the statistics of signal detection with those derived
from our knowledge (or ignorance) of the measurement process is
essential for meaningful decision making. Historical use of a
multiple of the blank is perhaps more readily understood also,
through the formal incorporation of the term 0.11 BEA.

3.2.7 optimization and iteration: figure of merit. Optimal
detection limits are sometimes treated through the maximization of
some sort of figure of merit (FOM) such as S//B, etc. Simplistic
FOM's tend to ignore complex dependence of L,’s on measurement
conditions, systematic error components, and the explicit nature of
the sample. As chown in (35) for example the wvariation of radio-
activity detection limits with counting time may range from t™! to
tFl Since detection limits may be sample-dependent, because of
interference and matrix effects, 1iterative estimation of the
detection limit is sometimes required. Changes in the measurement
process may also be necessary if such sample dependence forces the
actual detection limit above the corresponding regulatory limit.

3.2.8 multicomponent detection limits. When one leaves the
realm of "simple" y - B net signal estimation, modeling and linear
or non-linear least squares computations are generally required for
component estimation. For the linear multicomponent model it 1is
possible to estimate the detection limit as a closed expression,
provided that all interfering analytes are included and the errors
(variance), constant. Weighted least squares calculations
involving Poisson or other concentration-dependent statistical
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Fig. 9. Effect of Bias on Detection Limits. Allowance for
bounds for bias [A,] increases the critical level by A,, and the
detection limit by twice that amount (simple detection), taking the
sign for the uncompensated bias as unknowm. o and B are now
inequalities -- ie, o, § < 0.05.
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weights require an iterative L, estimate (13.61). A relatively
simple inequality expression for L; can be given, however, by using
the results of a linear model fit, where the component of interest

is present at or above its detection limit (28). That is, %, =<
3.29 o, where o, is the standard error for the least squares
estimate of the component in question. The basis for this

inequality is that the standard error for any cpecific component
will be approximately constant or increase with its increasing
concentration in a mixture, all else remaining equal. Special
multicomponent problems associated with selected types of pattern
matching and multiple independent decisions, as in the detection of
several isolated spectral or chromatographic peaks, will be treated
in the next section.

3.2.9 effects of gradually changing distribution functions

and/or o's. For a = B, normally distributed errors with con-
stant, known variance, and simple paired estimates (y - B),

L,/L,=2. This simple ratio does not obtain, however, whenever any
of these conditions are not fulfilled. The matter of high thresh-
olds (a << 1) has already been noted. 1In the example discussed in
the last paragraph of the preceding section, a was vanishingly
small when L. was set to 340, . The ratio L,/L. in this case was

1.09 (8l). Similarly, the ratio is unity when the conceptual
difference between L, and L, is overlooked, such that g = 0.50.
Changing cdf’s 1is another matter. Because Tthe overall

detection process in effect relates to the discrimination of net
signals at the detection limit from null signals, one is faced with
the possibility of two different distributions at the two levels,
S=0 and S=5;. This problem does not arise in making detection
decisions, however, for S. depends only on o,, the standard
deviation of S when its true (mean) value is zero. Two cases will
be considered, a) the Poisson counting distribution, which changes
shape and (relative) discreteness with increasing signal level; and
b) the normal distribution, where ¢ increases with concentration, a
common occurrence in analytical chemistry. A third case of some
importance for environmental measurements is the distributional
perturbation which occurs as one adds normal measurement errors to
log-normal blank variations.

The Poisson distribution is decidely asymmetric and discrete

(in a relative sense) at the lowest levels. In fact, when the
expected (mean) value of the Poisson parameter -- in this case, the
blank -- is smaller than 0.05 counts, the critical level (y., gross

counts) equals zero. (This quantity is necessarily an integer for
the Poisson distribution, and o must be treated as an inequality
[@<0.05]1.) The detection limit (y,, gross counts) then equals 3.00
(not necessarily an integer), so y,/y. in this case is infinite.
With increasing signal level (counts) the Poisson distribution
approaches normality, so "the usual equations apply," and L,/L.
approaches 2.0. For B = 1.0, L,/L, = 3.4; for Bx5, L, = 2.7+2-L,
with Ly = 1.645 JB is a good approximation. See (28) for a more
extensive treatment of extreme, low-level counting statistics.
Poisson ¢'s increase with /(S+B). A linear increase of o with
concentration [a(y) = gy + mS], however, is common for many analy-
tical methode. Since S; = zo, and S, = S + zo,, the increase in o
in passing from S=0 to S$=S; means that S, > 2 S.. A closed expres-
sion, however, may be derived using the above linear model. (To
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simplify the notation in the remainder of this paragraph, S; and S,

will be represented as C and D respectively.) Let us consider

first the case where a precise estimate B is available for B.
Standard deviations are given by:

o, assumed variation: o, = a(S+§) = oy + mS

o, null signal [S = 0]: o, = d(B-B) = oy

o, detection limit [S = D]: op = o(D+B - B) = o(D+B) =
oy + mD

For normal random errors and @ = 8 = 0.05, the critical level
and detection limit are defined as:

c za, gy = 1.645 oy
D=C+ 20y =C +

z(aB + mD)
The last equation may be solved for D:
D = 2C/(1l-2zm)

For o=p=0.05, i.e., 2z=1.645, an important conclusion emerges: the
detection limit does not exist for m > 1/z — 0.61. This may be
academic, however, since so large a slope is unlikely for any
reasonable analytical method. A slope of 10%, however, would
result in D/C = 2.39. To illustrate, let us take the blank
standard deviation for the measurement of toluene in air, by a
fully specified method of sampling and gas chromatographic analy-
sis, to be 0.21 pg/L. The critical level for detection decisionms,
assuming normality, would then be 1.645 (0.21) = 0.34 ug/L. The
corresponding detection limit would be 2.39(0.34,) = 0.83 pg/L.

For the general case, where B is estimated from n replicates,
the algebra is only slightly more complicated. The variance of the
estimated net signal is now given by:

Vg = (o5 + mS)% + 02/n =V, + mS (205 + mS)
thus, defining n=(n+l)/n:
V, =02 =02 n and Vp =0 =V, +mD (205 + mD)

From these relations and the definitions for G [C = zo,] and
D[D=C+zo,], it is relatively straightforward to show that:

D =2C [1+ zm//5]/[1 - (zm)2] and oy/o, = D/C -1

Thus for #=2 (paired comparison), and m and z as before (0.1,
1.645), D/C = 2.20 and op/¢y — 1.29. The asymptotic result (D=2C)
follows of course when the slope m is negligible.

3.2.10 black hoxes and hidden algorithms. With the advent of
"user friendly" (and proprietary) software and automated data
reduction and even automated instrument systems which yield final
results only, a cautionary note must be sounded. That is, when the
computational scheme is not fully and explicitly described, and
when the software is not exhaustively studied and tested, erroneous
results may emerge. Worse still., there may be no way of
recognizing such results as erroneous, particularly if the
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instrumental system is designed in such a manner that the raw
evperimental data cannot be retrieved for alternative methods of
computation. It is inappropriate in this chapter to document the
problems arising, but it may be helpful to glimpse at their nature.
Inept or unlucky programming and inaccurate stored parameters will
always cause difficulties, but this of course is not restricted to

the domain of low-level measurement. Problems of special concern
for reliable and efficient detection which have come to the
attention of this author include: a) Thresholds which are

automatically set so high that detection power is seriously eroded;
b) Algorithms (and component models) which are data dependent.
This is especially a problem when peaks are marginally discernable,
with peak estimation algorithms switching rules depending on the
magnitude or apparent presence of a peak; c¢) estimation and search
routines based on inadequate models or inadequately accounting for
the effects of non-linear estimation; d) decision or detection
algorithms for which assumptions or parameters used are unclear
(and possibly incorrect); e) inaccessibility of raw data,
especially when peaks are not found, and the consequent inability
to investigate extra sources of variability or errors in assump-
tions, models or data.

Peak search or "model search"” and more generally optimization
routines that are sometimes heuristic and operate strictly in an
empirical fashion on the data at hand, deserve another comment.
That is, at the lowest levels and especially at the S = 0 extreme
[null hypothesis] such generally non-linear routines may provide no
S estimgtes, especially when negative, thus producing biased and
skewed S distributions. Once a peak or model is automatically
chosen from the noisy data, the algorithm switches, frequently to a
linear estimation algorithm. The problem is that the switch point
varies, being noise controlled; also the estimation algorithm
seldom gets to operate when the null hypothesis [S=0] is true. o,
is not obtained, and the normal distribution hypothesis testing
apparatus cannot be applied at the lowest signal levels. Perhaps
this is why the international gamma ray peak detection exercise
organized by the International Atomic Energy Agency found the
"visual" method of peak detection more successful than all others,
including the most sophisticated computer based schemes (58).

The "model search" issue is more profound. In multicomponent
chemical analysis, optimal models for estimation (number and nature
of components) are often chosen automatically and empirically, for
example by applying iterative, non-linear optimization routines,
and quite frequently non-negativity constraints. Such automatic
chemical model building, accomplished by suppressing (often
legitimate) negative estimates, deserves careful scrutiny. It may
be even more misleading than zero suppression with simple measure-
ments, especially when noise and multicollinearity are large.

Illustrations of some of these limitations, which are unique
for low-level data and therefore meaningful detection limits, may
be found in references 35, 57, and 70. Fig. 2 in the first refer-
ence 1illustrates an extreme, Yyet not uncommon problem; quite
visible spectral peaks have failed to be detected by the software.

3.2.11 guality. One solution for inadequate or incorrect
approaches to detection -- including control of both false posi-

tives and false negatives -- is the incorporation of known and
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blind standard reference samples and reference simulated data.
Such means for control are well established for trace analysis, but
they have rarely been brought to bear on the detection problem.
Interlaboratory low-level test data, though quite rare, have proven
most informative (58.70). Direct validation and control of « and f
errors should be made routinely with blind interlaboratory samples
and/or data representative of blanks and samples at or near
detection (or regulatory) limits, respectively. Evaluation of sets
of results via ROC curves could, in turn, be quite fruitful, for
the quality of the low-level measurements would be reflected in
the loci of the ROC curves, independent of the particular decision
rules employed.

3.3 Discrimination Limits Multiple Detection Decisions and
Patterns. When the null hypothesis is defined as zero analyte
concentration beyond the blank, or zero signal above the baseline
or background, it is appropriate to refer to an analyte (or signal)
detection process. In many practical cases, however, it is
interesting to consider the ability to discriminate concentrations
from a fixed non-zero reference level, or discriminate patterns or
n"chemical fingerprints” from a reference pattern. Multiple
hypothesis testing decisions form a natural link between these two
types of discrimination, and it becomes clear that both fixed level
"recognition" and chemical pattern recognition fall under the same
statistical frame-work as zero level analyte detectiom, Both
aspects of Qualitative Analysis (detection, identification) share
the same probabilistic foundation, including hypothesis specifica-
tion [H,, H,], decision criteria, and type I [a] and type II (B8]
errors [Ref. 8; pp. 233, 239]. In all cases, it is extremely
important to recognize that Lhe respective discrimination oxr
detection 1limits characterize the measurement process, mnot a
particular result. (As always, results are tested by comparison to
the corresponding critical level.) Our objective is to evaluate
the intrinsic capabilities of CMP's, often chaping these
capabilities to meet specific practical or research needs.

3.3.1 lower and upper regulatory limits: balancing risks and
costs. We have noted that detection limits dictated by regulatory
concerns have been surrounded by considerable confusion, discrepant
statistical and ad hoc formulations, ignorance, and even mild
deception. The apparent deception is related to the lack of
general understanding or agreement concerning the appropriate
nature and magnitude -of the error of the second kind (8, false
negative). By ignoring its presence, whether intentional or not,
those who must meet regulatory demands genmerate a f/a imbalance
where, at 50%, false negatives may exceed false positives by nearly
a factor of 400. One justification is that identically zero con-
centrations cannot exist anyway, and very small concentrations
cannot be effectively distinguished from the blank. A related,
very important observation is that small non-zero concentrations
will be "detected" on occasion, necessarily more frequently than
the false positive constraint [a] placed on the blank. To reduce
the penalty which might be associated with the occasional detection
of such small concentrations, it is of course helpful to reduce o

for the blank still further -- but this should be done openly, not
by subterfuge.
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To meet such legitimate concerns, while at the same time
keeping an open, realistic, and balanced view of false positives
and negatives, we recommend the substitution of lower and upper
regulatory limits -- whose difference is the discrimination limit
(Ay) -- in place of the null limit [zero] and the single, analyte
detection limit. To illustrate the suggested approach, Fig. 2 has
been modified in Fig. 10 to indicate a non-zero lower limit (L,),
and an upper limit (L;). As before, the upper limit in the
societal or regulatory setting would be established at such a level
that the concentration or event of concern would be reliably
detected [B=0.05] when its net "cost" to society crossed the limit
of acceptability. The lower limit from which the upper limit must
be reliably discriminated, is new: its level is established such
that the penalty for "detecting" a very small concentration is
likewise acceptable. Such penalties can be quite real, especially
in terms of intangibles, such as public alarm (71), or indirect
long-term mnegative perceptions affecting the business of a
regulatee. In Fig. 10 this concept is presented, again in the
context of earthquake detection, with the aid of hypothetical
positive and negative cost differentials which would define the
"trigger points" for L, and L;.

It ie important that the (regulatory) level-setting process
for these 1limits be decoupled from their estimation from the
characteristics of the measurement process. The former is a
sociopolitical matter involving complex risk assessment issues (&),
whilst the latter lies in the domain of the scientist. The
scientific responsibility is met once the discriminable limits lie
within those desired by society. Note that the discrimination
limit Ay is here defined as the difference I,-L, such that o, f
each equal 0.05. It is interesting next to consider precision
requirements, e.g., at the upper limit, as compared to those for
the conventional detection limit. Taking L, to be 50% of L, the
relative standard deviation at this L, would be about 15%, in
contrast with 30% for the conventional detection limit. (The
change is entirely due to the introduction of the non-zero L,; the
magnitude of L, is unchanged.) The precision (RSD at L,) would be
"quantitative" (10%), once L, equals 2/3 of L;. Quite possibly the
(subconscious) need for such discrimination capability is the
underlying motivation of those who call for abandoning detection
limits and Thypothesis testing in favor of "quantitative"
measurements.

The discrimination limit as depicted in Fig. 10 has two other
important applications, one in business and one in sclence. In
business matters involving trade or regulation, one may face the
task of "proving" the product or waste stream level exceeds or does
not exceed some prescribed value, such as the (upper) regulatory
limit. Pecause of measurcment crrxor, the ability to sccomplish
this is limited, and in fact it is set by the size of the dis-
crimination limit. Balancing of costs will again generally fix the
magnitude of 4;. Penalties will 1likely increase with greater
apparent departures from specifications; and the ability to defend
departures as small, or attack departures as large depends upon the
producer’s or consumer’'s discrimination limit. The discrimination
limit, hence precision of analysis, can only be improved with
increased analytical costs. In the socioeconomic arena decision
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Fig. 10. Discrimination Limits. Curve F~ represents the loss
to society as a function of earthquake magnitude; F* represents the
cost of avoidance (evacuation, etc.), the dashed portion simulating
indirect costs associated with false alarms -- eg, mental anguish,
damagod credibility, lawsuitse, ete. DPoints of imbalance between Ft
and F~ which exceed what is acceptable to society are taken as
lower and upper regulatory limits, which must be matched by
corresponding lower (Lo) and upper (LD) measurement limits whose
difference is the Discrimination Limit (A,). A non-zero lower
limit forces an improved precision requirement in comparison to the
"simple" L, of Fig. 2.
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theory may be helpful for deriving the appropriate balance between
penalties and analytical costs (therefore the requisite 4;),
particularly taking into consideration which party has the burden
of proof. (Note that the "cost" differential associated with the
burden of proof is equivalent to the size of the [measurement] dead
zone around the regulatory or specification limit -- i.e., the sum
of the "producer's" and "consumer'’s" discrimination limits.)

The scientific application involves "identification" in its
simplest sense. That is, if L, and L, are treated as unique or
identifying concentrations or isotope ratios, or characteristic
energies or wavelengths, etc., then the measurement process must be
designed so that A, is sufficiently small to distinguish between
these two classes. In analogy with the detection power (1-8)
characterizing the detection limit (given «), one finds the power
associated with A, described as "discriminatory power" (12, p. 517)
or "resolving power." This univariate, statistical approach to
identification shares much in common with detection. For example,
OC and ROC curves are just as appropriate for balancing false
positives and negatives, and for comparing capabilities of alterna-
tive measurement (and computational) techniques. In addition, the
difference between design of the measurement process to achieve a
given detection or identification capability and outcome (specific
result) is still manifest in an uncertain region -- i.e., results
falling within the RUD[region of uncertain detection] or RUI [region
of uncertain identification] may be detected or identified,
respectively, by chance but this cannot be "assured" (o, B = 0.05)

a priori. (See "multichannel identification, below, for further
discussion.)

3.3.2 impurity detection. A special issue involving dis-
crimination limits in analytical chemistry, having broad

importance, is the detection of impurities or contamination.
Conceptually, this can be treated as a direct outgrowth of the
"identification" or discrimination of singular classes charac-
terized by unique values of a continuous variable, as described in
the preceding paragraph. In Fig. 11 class-0 and class-A are shown
at separate unique (identifying) locations of a continuous measure-
ment variable x;. As depicted, the separation of these two classes
far exceeds the discrimination limit A;, so identification of a
pure component (in this 2-component universe) will present no
problem. If component-0 is contaminated by a small admixture of
component-A, however, there exists a limit [A;] below which a
contaminated sample will be indistinguishable from the pure

component-0. The minimum detectable contamination is numerically
equal to A,, when A, is expressed relative to the class separation
(X4 - %) -- i.e., as a mole fraction or mixing ratio. (Note that

"mixing" can occur as physical mixing of miscible chemical species,
or it can arise from superposition of signals from different
sources within the same detector.)

Two fundamental observations follow. First, class
separability and impurity detection power degrade with increasing
variance of the &, distributions, which in turn, depends on the
measurement precision and therefore the detection limits for the
two components. This direct, and quantifiable coupling between
pure component detection limits, component identification and
resolution, and Impurity detection 1s mosTt important, though
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scarcely surprising. -Second, if one has sufficient knowledge of
the "chemical universe" -- 1i.e., X; locations for the entire
population of H,'s -- then for any H, of interest, one can deduce
the maximum systematic error due to undetected contamination by
estimating A, for the "closest" impurity source. If this dis-
crimination limit is unacceptable, redesign of the CMP is in order.
Reliable estimation of systematic error bounds deriving from
undetectable contamination, or undetectable model error is one of
the important needs for accurate analytical results. Thoughtful
consideration of the coupling between experimental design, and
component detection and discrimination limits, supported by
excellent scientific knowledge concerning the H, universe offers
one of the most reliable and objective solutions to this problem.
An astute examination of these issues, emphasizing the universe of
potential contaminants has been provided by Rogers (6). For
simplicity, the discrimination problem was presented here in one
dimension (one measurement variable). Multivariable detection and
discrimination are obwvious eoxtenceions, leading generally to
increased detection and discrimination power, as one compares or
"matches" unique multivariable patterns in place of characteristic
values of a single variable. (See below.)

3.3.3 multiple detection decisions. Tf a rnumher of
detection or discrimination decisions are made in the course of a
measurement, the overall probabilities of false positives and false
negatives are accordingly altered. We consider two cases: first,
where the individual tests are unrelated or "serial", and second,
where ‘“parallel" tests are made, as in pattern recognition.
Independent, serial tests characterize the detection of isolated
spectral peaks, as in multichannel gamma ray spectroscopy, as well
as residuals following data analysis, and even replication experi-
ments and control charts. In all of these cases, the overall
probability of false positives and false negatives necessarily
exceeds that for the individual peak detection (or outlier detec-
tion) test. For example, if a large gamma ray spectrum containing
no actual radiocactivity were scanned with the equivalent of, say,
50 detection decisions [a = 0.05], there almost certainly [>92%
chance] would be at least one false positive peak. Similar
considerations apply to false negatives, so false alarms and missed
radioactivity would be the consequence. (Ignoring this issue has
led to some difficulties in the evaluation of low-level gamma ray
spectra; see Ref. 28 for further discussion.) The solution is to
follow the rules for combining probabilities; namely, adjusting the
significance levels so that the overall probabilities of correct
non-detection [l-a’] and correct detection [1-B8'] remain 95%. The
probability that all decisions are correct is simply the continued
product: (l-wx') = 0.95 = N(1l-n) = (1l-n)?, where m represents « or
B. and n, the equivalent number of tests per spectrum. Adjusted
values for a and B are then given by (Eq. 5),

a (ox ) = 1 - (0.95)1/n (5)

If the total error level is to be held at 5% [a’', B'] for a
multitest experiment in which H, is actually true 50 times and H,,
3 times, then Eq. 5 gives adjusted values of a = 0.00103, g8 = 0.017
with corresponding critical levels and detection limits of 3.1 g,
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and 5.2 o,, respectively. Monitoring of mostly empty spectra thus
provides justification for unequal @, g, and thus for L,/L. < 2.

3.3.4 pultichanmel identification. The linkage between
detection and identification was brought wup earlier, where
"identification" was formulated in terms of the statistical estima-
tion of the characteristic value (e.g., element concentration or
ratio, gamma ray energy) for the identifying variable. Linear
estimation was at least implied in that discussion, so that
initially normal data would lead to mnormal (though possibly
correlated) errors for the estimated results. For example, the
frequency distribution of events (counts) along the energy axis
[identifying variable] could be used to estimate the mean energy
("centroid") and its variance for a gamma ray peak, and the peak
magnitude or "area" could be simultaneously estimated with a simple
filter function to compensate for a linear baseline. The decision
space is now two dimensional, so contours of the bivariate area
(detection) - energy (identification) distribution would be used
for significance testing. When multichannel data are intrinsically
non-normal, or when they are subjected to non-linear operations as
in certain peak search and peak fitting algorithms, normality is
not precerved, so caution is in order in making detection deciciong
and in deriving confidence intervals.

"Non-statistical" identification is important in many facets
of analytical science, where signal location or "identity bin" pre-
determines species identity. Detection and identification are then
uncoupled, and any signal detected in the characteristic bin
simultaneously conveys detection and identity. Classical analyti-
cal chemistry (e.g., gravimetry) relied heavily on this model,
where unique chemical separations would guarantee identity. Modern
instrumental or chromatographic methods similarly succeed when the
resolving power (discrimination power) far exceeds the “"density" of
pure components along the informing variable.

3.3.5 ‘pattern discrimination limits multivariable
identification]. We considered the discrimination of chemical

components or classes earlier from a univariate perspective,
including the paired comparison for a single alternative or
contaminating component which would necessarily lie to one side of
the null class (known component against which the sample is to be
compared) . Before considering discrimination with multiple
chemical variables (compositional or spectral patterns), let us
broaden the univariate problem to two-sided discrimination, since
unlike analyte detection, characteristic or identifying wvariable
values generally may be larger or smaller than that of H . The H
discrimination limit test would then be 2-sided -- i.e., z, = 1.96
instead of 1.645 for a = 0.05. 1If a paired comparison of a test
sample (unknown) with the control sample (known, H ) falls within
+1.96 o,, we then conclude that there is no statistically sig-
nificant difference. This is not, however, proof that the patterns
are the same; it is only a test of consistency. It is necessary,

but not sufficient. To establish a real match, or "identifica-
tion," we must demonstrate that the universe of alternative
patterns will not match (statistically). Design of a measurement

process for the successful identification of a particular chemical
species or compositional state thus requires consideration of both
a and f errors, as depicted in Fig. 12.
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Fig. 11. Impurity Detection. A, represents the minimum
detectable concentration of substance-A [H,] in the "null" sub-
stance [H ]. The abscissa represents mole fraction or mixing

ratio. Individual impurity detection limits would obtain for each
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Fig. 12. Single Specles Matching; Univariable Identification.
For a given location on the abscissa [identifying variable: isotope
ratio, X-ray energy,...], unique identification requires that none
of the possible H,’'s overlaps (probability B or less) the two-sided
H, window [I]. That is, all separations must exceed the cor-
responding discrimination limits. (From the design perspective,
since identifying variable separations are generally fixed by
Nature, we must design the CMP to achieve corresponding 4,'s -- cf,
Fig. 8A [ROC curve].) [Illustration constructed usinga= 0.10, A

= ~-4.0 mg/g, og = 1.0 mg/g, and o, = 2.6 mg/g.]
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It is a small step to take from univariable identification to
multivariable or pattern matching. 1If we are concerned with just a
single alternative pattern [A], but several (n) measured variables,
then the consistency test requirez that all n variables match
statistically when the identity of test sample is the same as that

of the control sample [B]. Combining probabilities as before,
(l-a') = 0.95 = I(l-a;) = (1-a)®, Proof of identity, as before,
includes consideration of sufficiency -- i.e., we require in
addition that [A] mnot match (statistically) [B] simultaneously for
all measured variables. Probabilities are combined a little
differently in this case; the overall probability of an erroneous
match is given by B’ = I(B;). The product is also taken over all n

variables, whose individual B,'s will generally differ. Unless 8’
< 0.05, matching of patterns cannot establish identity. At the
same time, it Is this multiplicative feature, when individual g's
are themselves small, that gives multivariable or pattern
discrimination its enormous power.

To illustrate, let us consider matching of trace element
patterns in two pure source materials, where the origin of one
(control sample, B) is known, as is the composition of the possible
alternative A. Given the characteristics of the measurement
process and the compositions of the two known sources, we can tell
a priori whether the sources are discriminable as indicated above.
If not, the capability of an unknown test sample to match proves
nothing. Absence of a match under these conditions, however, would
deserve scrutiny; it could indicate either faulty measurements or
faulty assumptions. Illustrative data are given in Table III.

Table III. Multivariable Identification

Input data for estimating the discriminability (identifiability)
of particle emissions from steel plants A and B (&,b,c

Hy: Bwvs ﬁ Hy: Avs B
Al Si Ca Cr Mn Fe
Concentration (mg/g)

steel-B 10 12 45 3.2 22 160

steel-A 13 8 70 3.3 i6 120

o 1.1 1.0 5.8 0.32 1.9 14
window [I ] 4.00 3.63  21.1 1.16 6.91 50.9

distance [A] 3.0 -4.0 25. 0.10 -6.0 -40.
B 0.74 0.40 0.32 0.98 0.63 0.71
bLfoy 1.93 -2.83 3.05 0.22 -2.23 -2.02

(a) Based on data from Ref. 72.
(b) Values of I and B are given for n=5.
(c) Fig. 13 depicts the windows [I] and variable separations [A].




1. CURRIE  Overview of Historical, Societal, and Technical Issues 47

Concentrations for six elements characterizing two steel
aerosol samples (72) are given in the first two rows. Steel-B is
taken as the control, and steel-A as the alternative source. H, is
represented by the vector or pattern difference, (x5 - X5); H,, by
(%, - iB). The last five rows of the table indicate, respeetively:
the standard deviations [o] for the elements in question, the
matching intervals [I], the concentration differences [A] under H,
the probability of false matches [f], and the ratios of concentra-
tion differences [A] to the paired measurement standard deviations
[o,1. 1-B and A/o, both serve as measures of individual element
discriminating power. The quantity I is computed by requiring l-o'
to be 0.95; for n=5, this means a = 0.0102 or z, (2-sided) = 2.57.
(For 6-member patterns, z; increases to 2.63.) Then I = * z o,
where o, = /2. Pattern differences [A], indicated by the open
circles, are shown in comparison with matching intervals in Fig.
13.

For this example, pattern identifiability (H, "provability")
has been approached in two ways. First, B’ has been calculated as
the product of the individual B,'s, reflecting the series of
individual element matching decisions. (For n = 5, omitting Ca,
this product equals 0.13.) Second, the vector difference repre-
-sented by H, 1is examined through the use ot the non-central x*
statistic, where E(A/ao)z is the non-centrality parameter (Z3). In
this second case the test of the vector match (i.e., H  test) is
carried out by comparing the sum of squares of the n observed
normalized differences with the critical level for the central x?
for n - degrees of freedom. The rms value from the sum of squares
-- (8/0,) ., -- represents the multivariable generalization of the
univariate normalized differences. It is a convenient single
parameter measure (index) for the vector discrimination power
(1-8'), as B' is uniquely determined by this quantity, given a' and
the number of degrees of freedom.

Table IV gives results for the two types of test and several
choices of element patterns. Important dual pattern identification

conclusions follow:. (a) Discrimination power (identifiability)
differs according to the type of test, x?> being significantly
better and becoming more so with increased dimensionality. (b)
Optimal feature selection (e.g., for n=5) gives optimal discri-
minating power for the number of variables selected. (¢) There
exists an optimal number of dimensions (variables). The most

powerful variable (here, Ca) is used for n=l; a second discrimi-
nating variable yields increased power with n=2; but eventually
addition of poorly discriminating varlables "dilutes” the discri-
mination power -- e.g., n=6 compared to the best set of 5. (d)
Increased dimensionality gives enormous leverage to modest improve-
ments in precision, through the product I8, . (See bottom line,
Table IV.) These four conclusions directly indicate the way toward
improved discrimination power, the last being the most influential.
(x 2 in the table denotes the non-central x2.)

3.3.6 generalization, The foregoing considerations of
hypothesis testing and pattern identification limits were neces-
sarily simplified, an extended discussion being beyond the scope of
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Fig. 13. Multivariable Identification. H_  windows [I] and H,
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(element) patterns characteristic of particle emissions from two
steel plants. [See Table III.]
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Table IV. Pattern Discrimination Power [1 - 8']

(Steel-A particles vs Steel-B particles [control]; a' = 0.05)
=1 =5 n=6
(Ca) (-Ca) (-Cr)

Sequential matching(?) 0.86 0.87% 0.958 0.949
x? - test(P) 0.88 0.967 0.997 0.996
(a) criterion: x, < I., all i power: 1 - 1 B,
(b) criterion: xi < x% power: 1 - P(x'2)

#8% incr. precision ( o,'s) increases the power to 0.95 [target].

this chapter. The principal generalizations that should be
considered, however, are the following:

(1) For the first ("matching") strategy, the requirement of
homogeneous variance may be relaxed with the use of individual o¢'s:
i.e., aEﬁ for the evaluation of o and I, and ﬂ/(aAz_+ anz), to
recalculate the g, (See Figure 12).

(2) For variances estimated as s?'s, t and F would replace z
and x?, respectively, for hypothesis testing. To estimate the
power of the tests, the corresponding non-central distributions
would be employed. The non-centrality parameter for the F
distribution is the same as for x?. This means that even in the
best of circumstances (orthogonal variables) this approach to the
identification limit or power requires homogeneity of variance and
knowledge of o. (See reference (74) for a discussion of these
issues, as well as an in-depth treatment of multivariate hypothesis
testing and classification.)

(3) If the H, universe contains more than one member, its
membership and composition must be known for identification to be
meaningful. Such knowledge, of course, is in the domain of
disciplinary ("scientific") expertise. Proof of H, [identifica-
tion] comes only when discriminating power is adequate with respect
to all H,’'s. For a given control pattern B, only that region of
variable space within the discriminating volume need be explored,
however. For sequential matching, this means only A - patterns for
which the distribution of the difference spectrum A - B sig-
nificantly overlaps the I-hypercube; for the alternative approach.
the discriminating volume derives from the critical value for x2.
Multiclass discrimination may be performed, for example, through a
series of binary tests (12, 17, 74).

(4) Impurity detection for the multivariable case may be
treated as a direct extension of the single variable case. For two
patterns, the impurity detection limit (component A contaminating
control component B) can be calculated from (A/o,),,. corresponding
to B' = 0.05, where ¥* (a' = 0.05) is used to test the null
hypothesis [H,: % - ﬁB]. For mixed impurities, a "worst case”
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limit may be derived from the "pseudopattern" of closest approach.
That 1is, the two pattern discrimination 1limit is recalculated
substituting A' for A, where pseudopattern A’ 1is the linear
combination of alternative vectors which lies closest to B. At
trace levels, observed patterns become increasingly fuzzy, because
of measurement imprecision or baseline noise. Clearly, under such
circumstances "detection" and "identification" become entwined.
(See reference (75).)

{5) Covariance among variables (e.g., elemental
concentrations) within individual classes is by far the greatest
complication. It may be treated in one of four ways: (a) Select

just one variable or function of wvariables (e.g., first principal
component); covariance is then undefined. (b) Select only the most
powerful, uncorrelated (or nearly independent) variables,
discarding others showing significant correlation (12, Chapt 20).
(¢) Transform the original variables into a reduced, orthdgonal
set, as in Principal Component Factor Analysis and SIMCA (76,97).
(d) In the absence of a very large sample for testing the multi-
variate normal assumption and estimating the within class covari-
ance matrices, the fourth alternative is daunting: taking into
account the full covariance structure through critical contours
[e,8] of the hyperellipeoide corresponding to H, and H,. Coneider-
ing just two variables, the treatment would be analogous to the
confidence ellipse for the estimated slope and intercept of a
fitted calibration line. (Hypothesis testing of calibration curve
parameters is far more amenable to this multivariate "parametric"
approach, however, since the correlation matrix is known from the
design of the experiment (77).) For two variables, the matching
intervals I and the respective probabilities (l-a’) would mnot be
greatly affected by the lack of rigorous knowledge of the
covariance matrix, since (l-a') = (l-a)? = 1. The false match
probability B' could be significantly in error, however, because
B,+B, must now be replaced by B,(B,]1), where (B,]1l) is the
conditional probability of a false match for variable-2 given a
false match for variable-1. If the varlables are perfectly
correlated, (B,]1) = 1, and the second variable lends no incre-
mental discriminating power. Higher dimensions lead to increasing
complexity, and estimates of higher order correlations become
increasingly imprecise as one runs out of degrees of freedom.

4. CONCILUSIONS AND OUTLOOK

The ability to detect specified (absolute) 1levels of chemical
species in environmental, biological, and physical (material) sys-
tems is crucial for the well-being and advancement of our society.
Because of the practical importance of reliable detection in the
societal setting, on the one hand, and its technical complexity, on
the other, we face a "Two Cultures" type situation. We scientists
lack the expertise to fully comprehend or effectively influence the
sociopolitical issues; experts in that domain, similarly cannot be
expected to fully comprehend the technical issues involved.
Effective communication and mutual education -- one of the aims of
this volume and this overview chapter -- is therefore essential.
With this objective in mind, let us re-consider briefly some of the
observations and suggestions of this tripartite overview.
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4.1

o

Sociopolitical Perspectives

Adequate detection capabilities are important to society, both
for mnatural or anthropogenic hazards and for requisite
beneficial levels of chemical species -- e.g., nutrients.
vAdequacy"” means "certainty" to the layman; if a substance is
present (above the specified level of concern) it will surely be
detected -- the alarm will go off; if not, there will be no
(false) alarm.

Despite the intrinsic uncertainty (false positives and falce
negatives) associated with detection, and in fact, with all of
measurement, the general public is not schooled to accept such a
limitation. Ignorance and suspicion with respect to this issue
is reflected also when it comes to our ability to reduce
concentrations of "bad" species to zero, or for that matter to
detect all concentrations exceeding zero (Z78). Scientific
naivete’ regarding newly detected noxious species when detection
capabilities improve constitutes another form of ignorance
having potentially great political impact.

Sociopolitical "debates," in both the legislative and judicial
arenas, have very different ground rules than scientific debates
3). Advocacy, conflicting societal concerns and perceptions,
and even "hidden agenda" drive such debates. They cannot, and
probably should not, be conducted like a scientific forum. With
patience and honest input from the scientific community in its

area of ewxpertice, generally the collective common good is
served (79.80). With reference to risk management for "dread

risks" affecting large numbers of people, for example, Lave
observed that collective decisions are mandatory, but because of

the diversity of safety goals, collective decisions are
difficult (80).

Risk perceptions and collective (or delegated) decisions lie
behind many of our regulatory limits or hazard "alarm levels,"
[Lg] which, in turn, drive our measurement Detection Limits.
Though certain approaches to decision analysis, especially those
incorporating Bayesian strategies, might seem appropriate for
simultaneously embracing societal risk and measurement error
risk (false positives and negatives), it would seem advisable in

practice to decouple the two. Let society (or medicine, or
affected industry, etc.) enter the political debate to establish
their requisite Ip's. Then, Measurement Science, using the

appropriate scientific criteria and standards, should attempt to
meet these L;'s with scientifically defensible Detection Limits.
The late Philip Handler put it well, by stating that "Scientists
best serve public policy by living within the ethics of science,
not those of politics" (81).

Societal and scientific perceptions of risk sometimes diverge.
Slovic'’s investigation of ordered risk preferences of laymen vs
experts is an interesting case in point (79). Nuclear power,
for example, was rated first among representatives of the lay
public (League of Women Voters; college students), yet it was
20th in the eyes of experts. Surgery was 5th according to the
relevant experts, but it was only 10th in the public view. The
nature of our society naturally accords primary weight to that
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society's public perceptions, when it comes to political
decisions. This deserves our respect for many reasons, includ-
ing the fact that society's judgment is not constrained by a
possibly too narrow view or faulty algorithm. In faect, its
"basic conceptualization of risk is much richer than that of the
experts and reflects legitimate concerns that are typically
omitted from expert risk assessments" (79, p. 285).

Adequacy of detection limits is something that society has a
right to demand, and support if the cost should be high.
Inadequate detection capacity for specified levels of fires,
earthquakes, toxic organisms, etc. must be addressed through
refined sampling and measurement procedures. Inadequate perfor-
mance of a Measurement Process mnot only fails to provide
sufficient warning, but it may also produce quite misleading
conclusions. Elevated levels of Ni in human serum due to
occupational exposure (ca 5 ng/mL), for example, were quite
undetectable until an excellent reference analytical method was
developed under the auspices of the International Union of Pure
and Applied Chemistry [IUPAC]. Prior methods, quite incorrectly
implied that normal levels of Ni in blood serum were some ten
times higher than that occupational exposure level (82).

The costs of erroneous detection decisions can be quite
significant. Disastrous results may follow if irreversible
actiane are taken. Fven the seemingly harmless false pasitive
which can later be shown to be spurious can damage reputations
and/or lead to expensive court suits. It is important therefore
that scientific detection decisions and detection limits be

approached in a quantitative manner, with due attention to the
probability of errors of both kinds.

4.2 Technical Issues

(=]

Meaningful detection decisions and detection limite can follow
only from rigorous attention to the Measurement Process and an
Hypothesis Testing framework for defining detection capability.
This is especially appropriate, as hypothesis testing is the
expression of the Scientific Method. Decision criteria,
detection 1limits, and acceptable false positive and false
negative risks must be quantified, and CMP's designed to meet
their specifications. The scientific expertise required goes
deep. This was observed, for example, in the investigation of
detection limits for a wvariety of analytical methods for the
International Atomic Energy Agency. As illustrated in Ref. 35,
detailed, method specific expertise was essential in orxder to
expose certain subtle, but extremely important factors affecting
calibration and the blank [Note 7].

All is not well in the technical camp. Confusion among
scientists between the design of the MP to meet requisite levels
of performance [L;], and an experimental outcome or detection
decision based on a specified criterion [L.], is at the heart of
much our internal disarray. That is, two different (albeit
related) issues are under discussion, often unknowingly and with
conflicting terminology. Ad hoc rules of thumb, or simplistic
consensus ("voted") formulae are proffered -- often in the
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interest of producing a simple ranking of CMP's according to
something labeled as an 1OD. This serves no one. In par-
ticular, it fails to provide the public with meaningful
detection capabilities comprising reliable and adequate false
positive and false negative error probabilities. Perhaps the
most common extreme is the case where the pB-error is
unrecognized, such that its de facto value is 50% [Note 8].

o The drive toward facile expressions for limits of detection is
partly a matter of attitude and education. Solid training in
statistics and drilling with respect to the fundamental concepts
of experimental design and hypothesis testing in science is
missing from the undergraduate education of many chemists in the

U.S. Western Europe fares better; and now that training in
Chemometrics is beginning to appear in the American curricula
(83), real hope exists for common understanding of these

matters by the "ordinary" chemists of the future. An illustra-
tion of the present state comes from a survey recently taken by
an instrument manufacturer of its uscrs in the nuclear industry.
Regarding topical material covered at workshops, comments came
back that users would prefer omission of the theory with more
time spent on use of the formulas. A personal view is that
education related to basic concepts should always have the
priority; wunderstanding (and questioning of) formulas is
important, but calculators or computers are quite proficient at
using them.

o The 1ink between "ordimary" measurements and deleclion liwmits
needs reinforcing. That is, both depend for their validity on
all sources of systematic and random error associated with the

entire CMP. Thus, for example, detection decisions [tests of
significance] and confidence intervals depend on the same
assumptions - and error components for their wvalidity. If

Student's t is appropriate to use with the one, it is equally
appropriate for the other.

o Conventions for reporting data, and "black box" algorithms can
induce subtle bias into many types of modern chemical/
instrumental data, but the problem is exacerbated with the
growth of automatic laboratory systems and low level measure-
ments and data bases. The black box may contain mistakes, and
all too often its mechanism is unavailable to the user, and on
occasion that mechanism (i.e., algorithm) changes for low level
observations. Information loss or distortion, whether it occurs
within the black borx or by the pen of the user, ie especially
severe for low level data. Its impact on long term storage and
data base generation is an issue of some importance (34).

o Quality control at low levels (blank, detection limit) must be
addressed both with Standard Reference Materials and Standard
Test Data, if we are to certify the accuracy of our detection
decisions and detection limits. Since the blank has such a
profound influence on the validity of detection decisioms, it
deserves special attention. The CMP must be designed to incor-
porate an adequate number of "real" blanks, and it should take
advantage of the normalizing tendency of averages from paired
comparisons.
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o The introduction of Discrimination Limits, such that small
non-zero concentrations will rarely produce false positives,
should do much to alleviate the public alarm that sometimes
follows such "detection." At the same time it could avert the
common implicit overcompensation associated with ignoring of the
error of the second kind {[false negative]. Also, those who
decry current usage of detection limits because they are too
imprecise, or equivalent to the flipping of a coin, might regard
Discrimination Limits as useful, more precise measures of
detection capability, still in keeping with the hypothesis
testing concept.

o Discrimination Limits and multiple detection decisions lead
naturally to univariate and multivariate formulations for
identification, an outgrowth of the fundamental concept of
hypothesis testing. Methods for treating this link have been
developed, so it becomes natural at this point for us to address
together the two primary characteristics of Qualitative
Analysis: Detection and Identification.

o Identification differs in one, very critical respect from
detection: a consistency test of the null hypothesis is
necessary but not sufficient for identification. Discrimination
limits must be adequate for all alternative hypotheses (other
substances). At this point scientific intuition or expertise
plays a crucial role, for we must somehow discover the universe
of all possible alternatives to the substance we wish to
identify, in the context of the given measurement process.

4.3 Pre- and Post-History: The Challenge. The concept of the
Detection Limit, at least in Analytical Chemistry, was slow to
evolve in the early decades of this century from a loose, qualita-
tive idea, to a potentially semi-rigorous numerical attribute for a
fully-defined CMP. During the past twenty years or so, important
strides have been made in education and in the development of a
consistent and practically useful formulation of the Detection
Limit, especially in Europe. Unfortunately, diversity in under-
standing, formulation, and nomenclature among scientists continues.
This has been exacerbated by the demand for regulations and
simplified rules and formulas, often on relatively short time

scales. "Definitions" deriving from polemics or from democratic,
consensus tactics are unlikely to meet long term standards for
scientific rigor (conceptual rigor, not necessarily

uncertainty-free, numerical rigidity).

Although a sound approach to detection has been available for
at least two decades, and despite its current successful applica-
tion Lo many practical and scilentific problems, the current dis-
array among scientists in the U.S. [cf Fig. 4] can only further
mystify the public in an area that seems already inherently
mystical. The promise comes from trends in chemical education and
from work in progrcss in reputable international chemical organiza-
tions. Statistics and the proper concepts of measurement uncer-
tainty, experimental design, and hypothesis testing are gaining a
foothold in the undergraduate chemical curriculum, especially under
the ctimuli of modern instrumental and computational facilities and
Chemometrics (84). Also, at the present time at least two
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commissions of  IUPAGC, partly in collaboration with the
international chemometrics community, are drafting guidelines and
nomenclature documents treating a broad range of chemical measure-
ment issues, including those related to uncertainty, experiment
design, reporting of data, and detection. :

Cooperation between the two cultures should become
increasingly fruitful, as common concern in meeting society'’'s
legimitate needs for practical detection capabilities bind us
together, and as we each invest our efforts in our respective areas
of expertise. Mutual education and inter-cultural communication
can only accelerate this process.
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Notes

Note 1. Analytical advances have led to the possibility of
“single atom detection" (85). At the same time it is recognized
that at concentrations of 1 part in 103 (in water) in principle
"every known organic compound could be detected" (86). These
measurement realities mandate the setting of regulatory levels on
bases other than either non-zero concentrations, or the inherent
ability to detect.

Note 2. That Feigl’s "Identification Limit" referred to the
minimum quantity detectable (L) as opposed to the decision or
critical level (L.) 1is clear from his statement defining the
"*Erfassungsgrenze’ [as] die Kleinste absolute Menge Substanz
die ... noch nachweisbar und bestimmbar ist "(Ref. 19, p. 6). In a
later, english language publication, this meaning was amplified in
a manner that foreshadowed the modern statistical approach to
detection. In the volume "Chemistry of Specific, Selective, and
Sensitive Reactions", p. 14 (98), Feigl described a test for
magnesium which was "always" positive, for 40 repetitions, using a
0.05% Mg solution. With dilution by factors of 10 and 50, however,
the test was positive only in 24 and 6 instances, respectively.
With this, Feigl embraced the concept of the "region of uncertain
reaction" (99), and a condition for the identification limit that
the chance of a false negative be negligible.

Note 3. Symbols introduced 1in this section 1nclude the
following: y [gross signal], B [null signal = background, baseline,
or blank], S [net signal], x [analyte concentration or amount], A
["sensitivity" or calibration factor], pdf [probability density
function], cdf [cumulative distribution function], superscript " ox
est( ) [estimated value], E() or p [expected value], V or o?
[population variance], s? [estimated variancel, o, [standard
deviation of the estimated net signal, when E(S)=0], CI [confidence
interval}l, df [degrees of freedom], A [bias], A, [bias detection
limit; discrimination limit]. Subscripts, _ ., y, denote lower and
upper limits, respectively.



